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Abstract
Adversarial examples seem to be inevitable. These specifi-
cally crafted inputs allow attackers to arbitrarily manipulate
machine learning systems. Even worse, they often seem harm-
less to human observers. In our digital society, this poses a
significant threat. For example, Automatic Speech Recogni-
tion (ASR) systems, which serve as hands-free interfaces to
many kinds of systems, can be attacked with inputs incompre-
hensible for human listeners. The research community has
unsuccessfully tried several approaches to tackle this problem.

In this paper we propose a different perspective: We accept
the presence of adversarial examples against ASR systems,
but we require them to be perceivable by human listeners. By
applying the principles of psychoacoustics, we can remove
semantically irrelevant information from the ASR input and
train a model that resembles human perception more closely.
We implement our idea in a tool named DOMPTEUR1 and
demonstrate that our augmented system, in contrast to an un-
modified baseline, successfully focuses on perceptible ranges
of the input signal. This change forces adversarial examples
into the audible range, while using minimal computational
overhead and preserving benign performance. To evaluate
our approach, we construct an adaptive attacker that actively
tries to avoid our augmentations and demonstrate that adver-
sarial examples from this attacker remain clearly perceivable.
Finally, we substantiate our claims by performing a hearing
test with crowd-sourced human listeners.

1 Introduction

The advent of deep learning has changed our digital society.
Starting from simple recommendation techniques [1] or image
recognition applications [2], machine-learning systems have
evolved to solve and play games on par with humans [3–6], to
predict protein structures [7], identify faces [8], or recognize
speech at the level of human listeners [9]. These systems
are now virtually ubiquitous and are being granted access to

1The French word for tamer

critical and sensitive parts of our daily lives. They serve as our
personal assistants [10], unlock our smart homes’ doors [11],
or drive our autonomous cars [12].

Given these circumstances, the discovery of adversarial
examples [13] has had a shattering impact. These specifi-
cally crafted inputs can completely mislead machine learning-
based systems. Mainly studied for image recognition [13],
in this work, we study how adversarial examples can affect
Automatic Speech Recognition (ASR) systems. Preliminary
research has already transferred adversarial attacks to the au-
dio domain [14–19]. The most advanced attacks start from
a harmless input signal and change the model’s prediction
towards a target transcription while simultaneously hiding
their malicious intent in the inaudible audio spectrum.

To address such attacks, the research community has de-
veloped various defense mechanisms [20–25]. All of the
proposed defenses—in the ever-lasting cat-and-mouse game
between attackers and defenders—have subsequently been
broken [26]. Recently, Shamir et al. [27] even demonstrated
that, given certain constraints, we can expect to always find
adversarial examples for our models.

Considering these circumstances, we ask the following
research question: When we accept that adversarial examples
exist, what else can we do? We propose a paradigm shift:
Instead of preventing all adversarial examples, we accept the
presence of some, but we want them to be audibly changed.

To achieve this shift, we take inspiration from the machine
learning community, which sheds a different light on adver-
sarial examples: Illyas et al. [28] interpret the presence of
adversarial examples as a disconnection between human ex-
pectations and the reality of a mathematical function trained
to minimize an objective. We tend to think that machine learn-
ing models must learn meaningful features, e. g., a cat has
paws. However, this is a human’s perspective on what makes
a cat a cat. Machine learning systems instead use any avail-
able feature they can incorporate in their decision process.
Consequently, Illyas et al. demonstrate that image classifiers
utilize so-called brittle features, which are highly predictive,
yet not recognizable by humans.



Recognizing this mismatch between human expectations
and the inner workings of machine learning systems, we pro-
pose a novel design principle for ASR system inspired by
the human auditory system. Our approach is based on two
key insights: (i) the human voice frequency is limited to the
band ranges of approximately 300−5000Hz [29], while ASR
systems are typically trained on 16kHz signals, which range
from 0−8000Hz, and (ii) audio signal can carry information,
inaudible to humans [15]. Given these insights, we modify
the ASR system by restricting its access to frequencies and ap-
plying psychoacoustic modeling to remove inaudible ranges.
The effects are twofold: The ASR system can learn a better
approximation of the human perception during training (i.e.,
discarding unnecessary information), while simultaneously,
adversaries are forced to place any adversarial perturbation
into audible ranges.

We implement these principles in a prototype we call
DOMPTEUR. In a series of experiments, we demonstrate
that our prototype more closely models the human auditory
system. More specifically, we successfully show that our
ASR system, in contrast to an unmodified baseline, focuses
on perceptible ranges of the audio signal. Following Car-
lini et al. [30], we depart from the lab settings predominantly
studied in prior work: We assume a white-box attacker with
real-world capabilities, i.e., we grant them full knowledge of
the system and they can introduce an unbounded amount of
perturbations. Even under these conditions, we are able to
force the attacker to produce adversarial examples with an
average of 24.33 dB of added perturbations while remaining
accurate for benign inputs. Additionally, we conduct a large
scale user study with 355 participants. The study confirms
that the adversarial examples constructed for DOMPTEUR
are easily distinguishable from benign audio samples and
adversarial examples constructed for the baseline system.

In summary, we make the following key contributions:

• Constructing an Augmented ASR. We utilize our key
insights to bring ASR systems in better alignment with
human expectations and demonstrate that traditional
ASR systems indeed utilize non-audible signals that are
not recognizable by humans.

• Evaluation Against Adaptive Attacker. We construct
a realistic scenario where the attacker can adapt to the
augmented system. We show that we successfully force
the attacker into the audible range, causing an average
of 24.33 dB added noise to the adversarial examples. We
could not find adversarial examples when applying very
aggressive filtering; however, this causes a drop in the
benign performance.

• User Study. To study the auditory quality of adversarial
examples, we perform a user study with an extensive
crowd-sourced listening test. Our results demonstrate

that the adversarial examples against our system are sig-
nificantly more perceptible by humans.

To support further research in this area, we open-source
our prototype implementation, our pre-trained models, and
audio samples online at github.com/rub-syssec/dompteur.

2 Technical Background

In the following, we discuss the background necessary to
understand our augmentation of the ASR system. For this
purpose, we briefly introduce the fundamental concepts of
ASRs and give an overview of adversarial examples. Since
our approach fundamentally relies on psychoacoustic model-
ing, we also explain masking effects in human perception.

Speech Recognition ASR constitutes the computational
core of today’s voice interfaces. Given an audio signal, the
task of an ASR system is to transcribe any spoken content
automatically. For this purpose, traditionally, purely statistical
models were used. They now have been replaced by modern
systems based on deep learning methods [31–33], often in the
form of hybrid neural/statistical models [34].

In this paper, we consider the open-source toolkit
KALDI [35] as an example of such a modern hybrid sys-
tem. Its high performance on many benchmark tasks has led
to its broad use throughout the research community as well as
in commercial products like e. g., Amazon’s Alexa [36–38].

KALDI, and similar DNN/HMM hybrid systems can gener-
ally be described as three-stage systems:

1. Feature Extraction. For the feature extraction, a frame-
wise discrete Fourier transform (DFT) is performed on
the raw audio data to retrieve a frequency representation
of the input signal. The input features of the Deep Neu-
ral Networks (DNN) are often given by the log-scaled
magnitudes of the DFT-transformed signal.

2. Acoustic Model DNN. The DNN acts as the acoustic
model of the ASR system. It calculates the probabilities
for each of the distinct speech sounds (called phones)
of its trained language being present in each time frame
from its DFT input features. Alternatively, it may com-
pute probabilities, not of phones, but of so-called clus-
tered tri-phones or, more generally, of data-driven units
termed senones.

3. Decoding. The output matrix of the DNN is used to-
gether with an hidden Markov model (HMM)-based lan-
guage model to find the most likely sequence of words,
i. e., the most probable transcription. For this purpose, a
dynamic programming algorithm, e.g., Viterbi decoding,
is used to search the best path through the underlying
HMM. The language model describes the probabilities
of word sequences, and the acoustic model output gives
the probability of being in each HMM state at each time.

https://github.com/rub-syssec/dompteur
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(a) Absolute Hearing Thresholds

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

Frequency (kHz)

0

20

40

60

80

H
ea

ri
n

g
T

h
re

sh
ol

d
s

(d
B

)

(b) Frequency Masking
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(c) Temporal Masking

Figure 1: Psychoacoustic allows to describe limitations of
the human auditory system. Figure 1a shows the average
human hearing threshold in quiet. Figure 1b shows an exam-
ple of masking, illustrating how a loud tone at 1kHz shifts the
hearing thresholds of nearby frequencies and Figure 1c shows
how the recovery time of the auditory system after processing
a loud signal leads to temporal masking.

Psychoacoustic Modeling Recent attacks against ASR sys-
tems exploit intrinsics of the human auditory system to make
adversarial examples less conspicuous [17, 39–41]. Specifi-
cally, these attacks utilize limitations of human perception to
hide modifications of the input audio signal within inaudible
ranges. We use the same effects for our approach to remove
inaudible components from the input:

• Absolute Hearing Threshold. Human listeners can only
perceive sounds in a limited frequency range, which di-
minishes with age. Moreover, for each frequency, the
sound pressure is important to determine whether the sig-
nal component is in the audible range for humans. Mea-

suring the hearing thresholds, i. e., the necessary sound
pressures for each frequency to be audible in otherwise
quiet environments, one can determine the so-called ab-
solute hearing threshold as depicted in Figure 1a. Gen-
erally speaking, everything above the absolute hearing
thresholds is perceptible in principle by humans, which
is not the case for the area under the curve. As can be
seen, much more energy is required for a signal to be
perceived at the lower and higher frequencies. Note that
the described thresholds only hold for cases where no
other sound is present.

• Frequency Masking. The presence of another sound—
a so-called masking tone—can change the described
hearing thresholds to cover a larger area. This masking
effect of the masking tone depends on its sound pressure
and frequency. Figure 1b shows an example of a 1 kHz
masking tone, with its induced changes of the hearing
thresholds indicated by the dashed line.

• Temporal Masking. Like frequency masking, temporal
masking is also caused by other sounds, but these sounds
have the same frequency as the masked tone and are
close to it in the time domain, as shown in Figure 1c.
Its root cause lies in the fact that the auditory system
needs a certain amount of time, in the range of a few
hundreds of milliseconds, to recover after processing a
higher-energy sound event to be able to perceive a new,
less energetic sound. Interestingly, this effect does not
only occur at the end of a sound but also, although much
less distinct, at the beginning of a sound. This seeming
causal contradiction can be explained by the processing
of the sound in the human auditory system.

Adversarial Examples Since the seminal papers by
Szegedy et al. [13] and Biggio et al. [42], a field of research
has formed around adversarial examples. The basic idea is
simple: An attacker starts with a valid input to a machine
learning system. Then, they add small perturbations to that in-
put with the ultimate goal of changing the resulting prediction
(or in our case, the transcription of the ASR).

More formally, given a machine learning model f and an
input-prediction pair 〈x, y〉, where f (x) = y, we want to find
a small perturbation δ s.t.:

x′ = x+δ ∧ f (x′) 6= f (x).

In this paper, we consider a stronger type of attack, a tar-
geted one. This has two reasons: the first is that an untargeted
attack in the audio domain is fairly easy to achieve. The sec-
ond is that a targeted attack provides a far more appealing (and
thus, far more threatening) real-life use case for adversarial
examples. More formally, the attacker wants to perturb an in-
put phrase x (i.e., an audio signal) with a transcription y (e.g.,
“Play the Beatles”) in such a way that the ASR transcribes



an attacker-chosen transcription y′ (e.g., “Unlock the front
door”). This can be achieved by computing an adversarial
example x′ based on a small adversarial perturbation δ s.t.:

x′ = x+δ ∧ ASR(x′) = y′ ∧ y 6= y′. (1)

There exist a multitude of techniques for creating such ad-
versarial examples. We use the method introduced by Schön-
herr et al. [17] for our evaluation in Section 4. The method
can be divided into three parts: In a first step, attackers choose
a fixed output matrix of the DNN to maximize the probability
of obtaining their desired transcription y′. As introduced be-
fore, this matrix is used in the ASR system’s decoding step
to obtain the final transcription. They then utilize gradient
descent to perturb a starting input x (i. e., an audio signal feed
into the DNN), to obtain a new input x′, which produces the
desired matrix. This approach is generally chosen in white-
box attacks [16, 18]. Note that we omit the feature extraction
part of the ASR; however, Schönherr et al. have shown that
this part can be integrated into the gradient step itself [17].
A third (optional) step is to utilize psychoacoustic hearing
thresholds to restrict the added perturbations to inaudible fre-
quency ranges. More technical details can be found in the
original publication [17].

3 Modeling the Human Auditory System

We now motivate and explain our design to better align the
ASR system with human perception. Our approach is based
on the fact that the human auditory system only uses a subset
of the information contained in an audio signal to form an
understanding of its content. In contrast, ASR systems are
not limited to specific input ranges and utilize every available
signal – even those inaudible for the human auditory system.
Consequently, an attacker can easily hide changes within
those ranges. Intuitively, the smaller the overlap between
these two worlds, the harder it becomes for an attacker to
add malicious perturbations that are inaudible to a human lis-
tener. This is akin to reducing the attack surface in traditional
systems security.

To tackle these issues, we leverage the following two design
principles in our approach:

(i) Removing inaudible parts: As discussed in Section 2,
audio signals typically carry information imperceptible
to human listeners. Thus, before passing the input to the
network, we utilize psychoacoustic modeling to remove
these parts.

(ii) Restricting frequency access: The human voice fre-
quency range is limited to a band of approximately
300− 5000Hz [29]. Thus, we implement a band-pass
filter between the feature extraction and model stage (cf.
Section 2) to restrict the acoustic model to the appropri-
ate frequencies.

3.1 Implementation

In the following, we present an overview of the implementa-
tion of our proposed augmentations. We extend the state-of-
the-art ASR toolkit KALDI with our augmentations to build
a prototype implementation called DOMPTEUR. Note that
our proposed methods are universal and can be applied to any
ASR system.

Psychoacoustic Filtering Based on the psychoacoustic
model of MPEG-1 [43], we use psychoacoustic hearing
thresholds to remove parts of the audio that are not perceiv-
able to humans. These thresholds define how dependencies
between certain frequencies can mask, i.e., make inaudible,
other parts of an audio signal. Intuitively, these parts of the
signal should not contribute any information to the recog-
nizer. They do, however, provide space for an attacker to hide
adversarial noise.

We compare the absolute values of the complex valued
short-time Fourier transform (STFT) representation of the
audio signal S with the hearing thresholds H and define a
mask via

M(n,k) =

{
0 if S(n,k)≤H(n,k)+Φ

1 else
, (2)

with n = 0, . . . ,N − 1 and k = 0, . . . ,K − 1. We use the
parameter Φ to control the effect of the hearing thresholds.
For Φ = 0, we use the original hearing threshold, for higher
values we use a more aggressive filtering, and for smaller
values we retain more from the original signal. We explore
this in detail in Section 4. We then multiply all values of the
signal S with the mask M

T = S�M, (3)

to obtain the filtered signal T.

Band-Pass Filter High and low frequencies are not part
of human speech and do not contribute significant informa-
tion. Yet, they can again provide space for an attacker to hide
adversarial noise. For this reason, we remove low and high
frequencies of the audio signal in the frequency domain. We
apply a band-pass filter after the feature extraction of the sys-
tem by discarding those frequencies that are smaller or larger
than certain thresholds (the so-called cut-off frequencies).
Formally, the filtering can be described via

T(n,k) = 0 ∀ fmax < k < fmin, (4)

where fmax and fmin describe the lower and the upper cut-
off frequencies of the band-pass.



3.2 Attacker Model

While some of our augmentations improve the ASR system’s
overall performance, we are specifically interested in its per-
formance against adversarial perturbations. To achieve any
meaningful results, we believe the attacker needs to have com-
plete control over the input. Following guidelines recently
established by Carlini et al. [30], we embark from theoreti-
cal attack vectors towards the definition of a realistic threat
model, capturing real-world capabilities of attackers.

The key underlying insight is that the amount of perturba-
tions caused by a real-world attack cannot be limited. This is
easy to see: in the worst case, the attacker can always force
the target output by replacing the input with the correspond-
ing audio command. Note that this, in turn, implies that we
cannot completely prevent adversarial attacks without also
restricting benign inputs.

We can also not rely on obfuscation. Previous works
have successfully shown so-called parameter-stealing attacks,
which build an approximation of a black-box system [44–48].
Since an attacker has full control over this approximated
model, they can utilize powerful white-box attacks against it,
which transfer to the black-box model.

In summary, we use the following attacker model:

• Attacker Knowledge: Following Kerckhoffs’ princi-
ple [49], we consider a white-box scenario, where the
attacker has complete knowledge of the system, includ-
ing all model parameters, training data, etc.

• Attacker Goals: To maximize practical impact, we as-
sume a targeted attack, i. e., the attacker attempts to
perturb a given input x to fool a speech recognition sys-
tem into outputting a false, attacker-controlled target
transcription y′ based on Equation (1).

• Attacker Capabilities: The attacker is granted complete
control over the input, and we explicitly do not restrict
them in any way on how δ should be crafted. Note, how-
ever, that δ is commonly minimized during computation
according to some distance metric. For example, by
measuring the perceived noise, an attacker might try to
minimize the conspicuousness of their attack [17].

We choose this attacker model with the following in mind:
We aim to limit the attacker, not in the amount of applied
perturbations, but rather confine the nature of perturbations
themselves. In particular, we want adversarial perturbations to
be clearly perceptible by humans and, thus, strongly perturb
the initial input such that the added noise becomes audible
for a human listener. In this case, an attack—although still
viable—significantly loses its malicious impact in practice.

4 Evaluation

With the help of the following experiments, we empirically
verify and assess our proposed approach according to the
following three main aspects:

(i) Benign Performance. The augmentation of the system
should impair the performance on benign input as little as
possible. We analyze different parameter combinations
for the psychoacoustics and our band-pass filter to show
that our augmented model retains its practical use.

(ii) Adaptive Attacker. To analyze the efficacy of the aug-
mented system, we construct and assess its robustness
against adversarial examples generated by a strong at-
tacker with white-box access to the system. This attacker
is aware of our augmentations and actively factors them
into the optimization.

(iii) Listening Test. Finally, we verify the success of our
method by a crowd-sourced user study. We conduct
a listening test, investigating the quality (i.e., the in-
conspicuousness) of the adversarial examples computed
from the adaptive attacker against the augmented ASR
system.

All experiments were performed on a server running
Ubuntu 18.04, with 128 GB RAM, an Intel Xeon Gold 6130
CPU, and four Nvidia GeForce RTX 2080 Ti. For our exper-
iments, we use KALDI in version 5.3 and train the system
with the default settings from the Wall Street Journal (WSJ)
training recipe.

4.1 Metrics
To assess the quality of adversarial examples both in terms
of efficacy and inconspicuousness, we use two standard mea-
sures.

Word Error Rate (WER) The Word Error Rate (WER)
is computed based on the Levenshtein distance [50], which
describes the edit distance between the reference transcrip-
tion and the ASR output (i.e., the minimum number of edits
required to transform the output text of the ASR system into
the correct text).

We compute the Levenshtein distance L as the sum over all
substituted words S, inserted words I, and deleted words D:

WER = 100 · L
N

= 100 · S+D+ I
N

,

where N is the total number of words of the reference text.
The smaller the WER, the fewer errors were made by the
ASR system.

To evaluate the efficacy of adversarial examples, we mea-
sure the WER between the adversarial target transcription and



the output of the ASR system. Thus, a successful adversarial
example has a WER of 0 %, i. e., fully matching the desired
target description y′. Note that the WER can also reach values
above 100 %, e. g., when many words are inserted. This can
especially happen with unsuccessful adversarial examples,
where mostly the original text is transcribed, which leads to
many insertions.

Segmental Signal-to-Noise Ratio (SNRseg) The WER
can only measure the success of an adversarial example in
fooling an ASR system. For a real attack, we are also inter-
ested in the (in-) conspicuousness of adversarial examples,
i. e., the level of the added perturbations. For this purpose,
we quantify the changes that an attacker applies to the audio
signal. Specifically, we use the Signal-to-Noise Ratio (SNR)
to measure the added perturbations. More precisely, we com-
pute the Segmental Signal-to-Noise Ratio (SNRseg) [51, 52],
a more accurate measure of distortion than the SNR, when
signals are aligned [52].

Given the original audio signal x(t) and the adversarial per-
turbations σ(t) defined over the sample index t, the SNRseg
can be computed via

SNRseg(dB) =
10
K

K−1

∑
k=0

log10
∑

T k+T−1
t=T k x2(t)

∑
T k+T−1
t=T k σ2(t)

,

with T being the number of samples in a segment and K
the total number of segments. For our experiments, we set
the segment length to 16 ms, which corresponds to T = 256
samples for a 16 kHz sampling rate.

The higher the SNRseg, the less noise has been added to
the audio signal. Hence, an adversarial example is considered
less conspicuous for higher SNRseg values. Note that we use
the SNRseg ratio only as an approximation for the perceived
noise. We perform a listening test with humans for a realis-
tic assessment and show that the results of the listening test
correlate with the reported SNRseg (cf. Section 4.4).

4.2 Benign Performance
Our goal is to preserve accuracy on benign inputs (i. e., non-
malicious, unaltered speech) while simultaneously impeding
an attacker as much as possible. To retain that accuracy as
much as possible, the parameters of the band-pass, and the
psychoacoustic filter need to be carefully adjusted. Note that
adversarial robustness is generally correlated with a loss in
accuracy for image classification models [53]. Accordingly,
we assume that higher adversarial robustness likely incurs a
trade-off on benign input performance.

All models in this section are trained with the default set-
tings for the Wall Street Journal (WSJ) training recipe of the
KALDI toolkit [35]. The corresponding WSJ-based speech
corpus [54] contains approximately 81 hours of training data
and consists of uttered sentences from the Wall Street Journal.
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Figure 2: Word Error Rate (WER) for different band-
pass filters. For each filter, we train three models and report
the best accuracy in terms of WER (the lower, the better).

We train three models for each configuration and report
the WER on the test set for the model with the best perfor-
mance. For the test set, we use the eval92 subset consisting
of 333 utterances with a combined length of approximately
42 minutes.

Band-Pass Filtering The band-pass filter limits the signal’s
frequency range by removing frequencies below and above
certain thresholds. Our goal is to remove parts of the audio
that are not used by the human voice. We treat these values
as classical hyperparameters and select the best performing
combination by grid searching over different cut-off frequen-
cies; for each combination, we train a model from scratch,
using the training procedure outlined above. The results are
depicted in Figure 2. If we narrow the filtered band (i. e.,
remove more information), the WER gradually increases and,
therefore, worsens the recognizer’s accuracy. However, for
many cases, even when removing a significant fraction of
the signal, the augmented system either achieves comparable
results or even surpasses the baseline (WER 5.90%). In the
best case, we reach an improvement by 0.35% percentage
points to a WER of 5.55% (200 Hz-7000 Hz). This serves
as evidence that the unmodified input contains signals that
are not needed for transcription. In Section 4.3.3, we further
confirm this insight by analyzing models with narrower bands.
We hypothesize that incorporating a band-pass filter might
generally improve the performance of ASR systems but note
that further research on this is needed.

For the remaining experiments, if not indicated otherwise,
we use the 200-7000 Hz band-pass.



Table 1: Recognition rate of the ASR system on benign
input. We report the performance of an unmodified KALDI
system as well as two variants hardened by our approach.
For our model, the scaling factor φ is set to 0 and the band-
pass filter configured with 200-7000Hz. Note, when feeding
standard input to DOMPTEUR, we disable its psychoacoustic
filtering capabilities.

KALDI DOMPTEUR

w/o band-pass w/ band-pass

Standard Input WER 5.90 % WER 6.20 % WER 6.33 %
Processed Input WER 8.74 % WER 6.50 % WER 6.10 %
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Figure 3: Recognition rate for psychoacoustic filtering.
For each φ we train a model both with and without band-
pass filter (200-7000Hz) and report the best accuracy from
three repetitions. A negative scaling factor partially retains
inaudible ranges. Note that the benefits of the band-pass fil-
ter are retrained, even when we incorporate psychoacoustic
filtering.

Psychoacoustic Filtering The band-pass filter allows us to
remove high- and low-frequency parts of the signal; however,
the attacker can still hide within this band in inaudible ranges.
Therefore, we use psychoacoustic filtering as described in
Section 3.1 to remove these parts in the signal. We evaluate
different settings for Φ from Equation (2) – by increasing
Φ, we artificially increase the hearing thresholds, resulting
in more aggressive filtering. We plot the results in Figure 3
for both psychoacoustic filtering and a baseline WER, with
and without band-pass, respectively. The WER increases with
increasing Φ, i. e., the performance drops if more of the signal
is removed, independent of the band-pass filter.

When we use no band-pass filter, the WER increases from
5.90% (baseline) to 6.50% for Φ = 0 dB, which is equivalent
to removing everything below the human hearing thresholds.
When we use more aggressive filtering—which results in
better adversarial robustness (cf. Section 4.3)—the WER in-
creases up to 8.05% for Φ = 14 dB. Note that the benefits of
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Figure 4: Progress of attack for computing adversarial
examples. We run the attack against multiple instances of
DOMPTEUR with different values of Φ and a 200Hz-7000Hz
band-pass filter. The baseline refers to the attack from Schön-
herr et al. [17] against an unaltered instance of KALDI. For
each attack report the Word Error Rate (WER) for the first
2000 iterations.

the band-pass filter remain even in the presence of psychoa-
coustic filtering and results in improving the WER to 6.10 %
(Φ = 0 dB) and 7.83 % (Φ = 14 dB). We take this as another
sign that a band-pass filter might generally be applicable to
ASR systems.

Cross-Model Benign Accuracy Finally, we want to eval-
uate if DOMPTEUR indeed only uses relevant information.
To test this hypothesis, we compare three different models.
One completely unaugmented model (i. e., an unmodified
version of KALDI), one model trained with psychoacoustics
filtering, and one model trained with both psychoacoustics
filtering and a band-pass filter. We feed these models two
types of inputs: (i) standard inputs, i. e., inputs directly lifted
from the WSJ training set, and (ii) processed inputs, these
inputs are processed by our psychoacoustic filtering. If our
intuitive understanding is correct and DOMPTEUR does in-
deed learn a better model of the human auditory system, it
should retain a low WER even when presented with non-
filtered input. Thus, the model has learned to ignore unnec-
essary parts of the input. The results are shown in Table 1
and match our hypothesis: DOMPTEUR’s performance only
drops slightly (6.10%→ 6.33%) when presented with unfil-
tered input or does even improve if the band-pass is disabled
(6.50%→ 6.20%). KALDI, on the other hand, heavily relies
on this information when transcribing audio, increasing its
WER by 2.84 percentage point (5.90%→ 8.74%). Thus, the
results further substantiate our intuition that we filter only
irrelevant information with our approach.



Table 2: Number of successful Adversarial Examples (AEs) and Segmental Signal-to-Noise (SNRseg) ratio for the exper-
iments with the adaptive attacker. We report the numbers for all computed adversarial examples against the augmented models
as well as our two baselines (with and without psychoacoustic hiding). As the success rate and SNRseg depend on the learning
rate, we combine these in the last row. For this, we select the best (i.e., least noisy) AE for each utterance among the four learning
rates. For the SNRseg, we only consider successful AEs. The higher the SNSseg, the less noise (i. e., adversarial perturbation) is
present in the audio signal. Negative values indicate that the energy of the noise exceeds the energy in the original signal.

KALDI DOMPTEUR

Learning
Rate

Metric baseline
w/o hiding

baseline
w/ hiding Φ = 0 Φ = 3 Φ = 6 Φ = 9 Φ = 12 Φ = 13 Φ = 14

0.05
AEs 50/50 17/50 31/50 28/50 10/50 4/50 0/50 0/50 0/50
SNR 5.80/ 14.44 13.48/ 18.50 6.03/10.63 3.61/ 8.31 1.21/5.53 1.50/ 3.23 — — —

0.01
AEs 50/50 28/50 38/50 34/50 22/50 10/50 0/50 0/50 0/50
SNR 2.15/ 10.59 9.36/ 15.81 3.74/ 9.53 0.47/ 6.41 -0.68/3.60 -1.31/ 1.10 — — —

0.5
AEs 49/50 23/50 48/50 44/50 42/50 20/50 1/50 1/50 0/50
SNR -8.54/ -0.02 1.08/ 8.63 -3.78/ 3.24 -6.51/ 0.11 -7.74/-1.47 -8.69/-3.35 -13.56/-13.56 -15.69/-15.69 —

1
AEs 50/50 16/50 49/50 50/50 43/50 23/50 1/50 1/50 0/50
SNR -13.68/ -5.03 -1.81/ 4.50 -7.44/-0.29 -10.50/-3.00 -10.99/-4.34 -11.98/-6.37 -17.69/-17.69 -11.73/-11.73 —

Best AEs AEs 50/50 37/50 50/50 50/50 46/50 27/50 2/50 2/50 0/50
SNR 5.80/ 14.44 8.71/ 18.50 3.36/10.63 0.85/ 8.31 -4.71/5.53 -7.14/ 3.23 -15.62/-13.56 -13.71/-11.73 —

AEs: Successful adversarial examples; SNR: SNRseg/SNRsegmax in dB

4.3 Adaptive Attacker

We now want to evaluate how robust DOMPTEUR is against
adversarial examples. We construct a strong attacker with
complete knowledge about the system and, in particular, our
modifications. Ultimately, this allows us to create success-
fully adversarial examples. However, as inaudible ranges are
removed, the attacker is now forced into human-perceptible
ranges, and, consequently, the attack loses much of its mali-
cious impact. We provide further support for this claim in Sec-
tion 4.4 by performing a user study to measure the perceived
quality of adversarial examples computed with this attack.

Attack. We base our evaluation on the attack by Schön-
herr et al. [17], which presented a strong attack that works
with KALDI. Recent results show that it is crucial to design
adaptive attacks as simple as possible while simultaneously
resolving any obstacles for the optimization [55]. To de-
sign such an attacker against DOMPTEUR, we need to adjust
the attack to consider the augmentations in the optimization.
Therefore, we extend the baseline attack against KALDI to
include both the band-pass and psychoacoustic filter into the
computation. This allows the attacker to compute gradients
for the entire model in a white-box fashion.

More specifically, we extend the gradient descent step
s.t. (i) the band-pass filter and (ii) the psychoacoustic filter
component back-propagates the gradient respectively.

(i) Band-Pass Filter. For the band-pass filter we remove
those frequencies that are smaller and larger than the
cut-off frequencies of the band-pass filter. This is also

applied to the gradients of the back propagated gradient
to ignore changes that will fall into ranges of the removed
signal

∇T(n,k) = 0 ∀ fmax < k < fmin. (5)

(ii) Psychoacoustic Filter. The same principle is used for the
psychoacoustic filtering, where we use the mask M to
zero out components of the signal that the network will
not process

∇S = ∇T�M. (6)

Experimental Setup. We evaluate the attack against dif-
ferent versions of DOMPTEUR. Each model uses a 200−
7000Hz band-pass filter, and we vary the degrees of the psy-
choacoustic filtering (Φ ∈ {0,3,6,9,12,13,14}). We com-
pare the results against two baselines to evaluate the inconspic-
uousness of the created adversarial examples. First, we run
the attack of Schönherr et al. without psychoacoustic hiding
against an unaltered version KALDI. Second, we re-enable
psychoacoustic hiding and run the original attack against
KALDI, to generate state-of-the-art inaudible adversarial ex-
amples. As a sanity check, we also ran the original attack
(i. e., with psychoacoustic hiding) against DOMPTEUR. As
expected, this attack did not create any adversarial examples
since we filter the explicit ranges the attacker wants to utilize.

As a target for all configurations, we select 50 utterances
with an approximate length of 5s from the WSJ speech corpus
test set eval92. The exact subset can be found in appendix A.
We use the same target sentence send secret financial report
for all samples.
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(b) Adversarial Example against KALDI
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(c) Adversarial Example against DOMPTEUR (Φ = 12)
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Figure 5: Spectrograms of adversarial examples. Figure 5a shows the unmodified signal, Figure 5b depicts the baseline with
an adversarial example computed against KALDI with psychoacoustic hiding, Figure 5c an adversarial example computed with
the adaptive attack against DOMPTEUR, and Figure 5d shows the computed hearing thresholds for the adversarial example.

These parameters are chosen such that an attacker needs to
introduce ~4.8 phones per second into the target audio, which
Schönherr et al. suggests as both effective and efficiently
possible [17]. Furthermore, we picked the utterances and
target sentence to be easy for an attacker in order to decouple
the influence on our analysis. Specifically, for these targets
the baseline has a very high success rate and low SNRseg
(cf. Table 2). Note that the attack is capable of introducing
arbitrary target sentences (up to a certain length). In Section
4.3.2, we further analyze the influence of the phone rate,
and in particular, the influence of the target utterance and
sentence on the SNRseg. We compute adversarial examples
for different learning rates and a maximum of 2000 iterations.
This number is sufficient for the attack to converge, as shown
in Figure 4, where the WER is plotted as a function of the
number of iterations.

Results. The main results are summarized in Table 2. We
report the average SNRseg over all adversarial examples, the
best (SNRsegmax), and the number of successful adversarial
examples created.

We evaluate the attack using different learning rates (0.05,
0.10, 0.5, and 1). In our experiments, we observed that while
small learning rates generally produce less noisy adversarial
examples, they simultaneously get more stuck in local optima.
Thus, to simulate an attacker that would run an extensive
search and uses the best result we also report the intersection
of successful adversarial examples over all learning rates. If

success rate is the primary goal, we recommend a higher
learning rate.

By increasing Φ, we can successfully force the attacker
into audible ranges while also decreasing the attack’s success
rate. When using very aggressive filtering (Φ = 14), we can
prevent the creation of adversarial examples completely, al-
beit with a hit on the benign WER (5.55%→ 7.83%). Note,
however, that we only examined 50 samples of the test corpus,
and other samples might still produce valid adversarial ex-
amples. We see that adversarial examples for the augmented
systems are more distorted for all configurations compared
to the baselines. When using Φ ≥ 12, we force a negative
SNRseg for all learning rates. For these adversarial examples,
the noise (i. e., adversarial perturbations) energy exceeds the
energy of the signal. With respect to the baselines, the noise
energy increases on average by 21.42 dB (without psychoa-
coustic hiding) and 24.33 dB (with hiding enabled). This
means there is, on average, ten times more energy in the ad-
versarial perturbations than in the original audio signal. A
graphical illustration can be found in Figure 5, where we plot
the power spectra of different adversarial examples compared
to the original signal.

4.3.1 Non-speech Audio Content

The task of an ASR system is to transcribe audio files with
spoken content. An attacker, however, might pick other con-
tent, i.e., music or ambient noise, to obfuscate his hidden
commands. Thus, we additionally evaluated adversarial ex-



Table 3: Number of successful Adversarial Examples
(AEs) and mean Segmental Signal-to-Noise (SNRseg) ra-
tio for non-speech audio content. For each AE, we selected
the least noisiest example, from running the attack with learn-
ing rates ({0.05,0.1,0.5,1.}). For the SNRseg we only con-
sider successful AEs and report the difference to the baseline
(KALDI). We highlight the highest loss in bold.

Birds Music

AEs SNRseg (dB) Loss AEs SNRseg (dB) Loss

KALDI

w/o hiding 50/50 11.83 45/50 23.26

w/ hiding 5/50 17.76 ( +5.93) 3/50 28.06 ( +4.80)

DOMPTEUR

Φ = 0 50/50 9.58 ( -2.25) 50/50 26.35 ( +3.09)

Φ = 6 31/50 -2.15 (-13.98) 45/50 16.03 ( -7.23)

Φ = 12 5/50 -12.25 (-24.08) 3/50 1.94 (-21.32)

Table 4: Attack for different cut-off frequencies of the
band-pass filter. We report the number of successful adver-
sarial examples (AEs) and the mean Segmental Signal-to-
Noise (SNRseg) ratio. For the SNRseg we only consider
successful AEs.

Band-pass 300Hz- 300Hz- 300Hz- 500Hz- 500Hz- 500Hz-
7000Hz 5000Hz 3000Hz 7000Hz 5000Hz 3000Hz

AEs 18/20 18/20 11/20 20/20 17/20 12/20
SNRseg 7.82 7.55 7.27 8.45 7.90 7.39
WER 5.90 % 5.94 % 6.40 % 6.50 % 6.33 % 7.09 %

amples based on audio files containing music and bird sounds.
The results are presented in Table 3.

We can repeat our observations from the previous experi-
ment. When we utilize a more aggressive filter, we observe
that the perturbation energy of adversarial examples increases
with respect to the baselines by up to 24.08 dB (birds) and
21.32 dB (music). Equally, the attack’s general success de-
creases to 5/50 (birds) and 3/50 (music) successful adversarial
examples.

Note that the SNRseg for music samples are in general
higher than that of speech and bird files as these samples have
a more dynamic range of signal energy. Hence, potentially
added adversarial perturbations have a smaller impact on the
calculation of the SNRseg. The absolute amount of added
perturbations, however, is similar to that of other content.
Thus, when listening to the created adversarial examples2 the
samples are similarly distorted. This is further confirmed in
Section 4.4 with our listening test.

4.3.2 Target Phone Rate

The success of the attack depends on the ratio between the
length of the audio file and the length of the target text, which
we refer to as the target phone rate. This rate describes how

2 rub-syssec.github.io/dompteur
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Figure 6: Word Error Rate (WER) and Segmental Signal-
to-Noise (SNRseg) ratio for different phone rates. We re-
port the mean and std. deviation for adversarial examples
computed for targets with varying length.

many phones an attacker can hide within one second of audio
content.

In our experiments, we used the default ratios recom-
mended by Schönherr et al. However, a better rate might
exist for our setting. Therefore, to evaluate the effect of the
target phone rate, we sample target texts of varying lengths
from the WSJ corpus and compute adversarial examples for
different target phone rates. We pick phone rates ranging
from 1 to 20 and run 20 attacks for each of them for at most
1000 iterations, resulting in 400 attacks.

The results in Figure 6 show that, in general, with increas-
ing phone rates, the SNRseg decreases and stagnates for target
phone rate beyond 12. This is expected as the attacker tries
to hide more phones and, consequently, needs to change the
signal more drastically. Thus, we conclude that the default
settings are adequate for our setting.

4.3.3 Band-Pass Cut-off Frequencies

So far, we only considered a relatively wide band-pass filter
(200-7000 Hz). We also want to investigate other cut-off
frequencies. Thus, we disable the psychoacoustic filtering and
compute adversarial examples for different models examined
in Section 4.2. We run the attack for each band-pass model
with 20 speech samples for at most 1000 iterations.

The results are reported in Table 4. We observe that the
energy amount of adversarial perturbation remains relatively
constant for different filters, which is expected since the at-
tacker has complete knowledge of the system. As we narrow
the frequency band, the attacker adopts and puts more pertur-
bation within these bands.

Apart from the SNRseg, we also observe a decrease in
the attack success, especially for small high cut-off frequen-
cies, with only 11/20 (300-3000 Hz) and 12/20 (500-3000 Hz)
successful adversarial examples.

https://rub-syssec.github.io/dompteur/


Table 5: Regression results for perceived sound quality
predicted by different audio stimuli. The dependent vari-
able is the quality score assigned to each audio stimulus.
We trained three different models, one for each data set
(speech/music/bird). Each model consists of two steps, with
the first step entering the audio stimulus as a predictor and the
second step entering type of device as a covariate. All mod-
els include the control variables gender, age, and language.
All regressions use ordinary least squares. Cluster adjusted
standard errors are indicated in parentheses. The R2 values
indicate the percentage of the variance of the perceived sound
quality explained by the respective audio stimuli.

Speech Music Bird

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

Audio -.905** -.905** -.871** -.871** -.830** -.830**
stimulus (.131) (.131) (.166) (.166) (.171) (.171)

Device .030** .008 .045**
(.473) (.597) (.615)

Controls Included Included Included
Obs. 4259 4259 4259

R2 .820 .821 .760 .761 .690 .692

P-value < 0.05 = *, P-value < 0.01 = **

4.4 Listening Tests

Our goal is to make an adversarial attack noticeable by forcing
modification to an audio signal into perceptible ranges. We
have used the SNRseg as a proxy of the perceived audio
quality of generated adversarial examples. However, this
value can only give a rough approximation, and we are in
general more interested in the judgment of human listeners.
Specifically, we are interested to quantify if and to what extent
malicious perturbations are audible to human listeners.

Therefore, we have conducted a Multiple Stimuli with Hid-
den Reference and Anchor (MUSHRA) test [56], a commonly
used test to assess the quality of audio stimuli. This test al-
lows us to get a ranking of the perceived quality of adversarial
examples in comparison to an unmodified reference signal.
Based on this measure, we can derive whether a participant 1)
could detect any difference between an adversarial example
and a clean signal (i.e., whether perturbations are audible) and,
2) obtain a subjective estimate on the amount of perceived
perturbations (i.e., poorly rated samples are perceived more
noisy).

Study Design In a MUSHRA test, the participants are pre-
sented with a set of differently processed audio files, the audio
stimuli. They are asked to rate the quality of these stimuli on
a scale from 0 (bad) to 100 (excellent). To judge whether the
participants are able to distinguish between different audio
conditions, a MUSHRA test includes two additional stimuli:
(i) an unaltered version of the original signal (the so-called
reference) and (ii) a worst-case version of the signal, which

is created by artificial degrading the original stimulus (the
so-called anchor). In an ideal setting, the reference should be
rated best, the anchor worst.

We want to rank the perceived quality of adversarial exam-
ples computed against DOMPTEUR and KALDI. For DOMP-
TEUR, we select three different versions: each model uses
a 200−7000Hz band-pass filter, and we vary the degree of
the psychoacoustic filtering (Φ ∈ {0,6,12}). For KALDI, we
calculate adversarial examples against the unaltered system
with psychoacoustic hiding enabled (cf. Section 2) to compare
against state-of-the-art adversarial examples.

As the reference, we use the original utterance, on which
the adversarial examples are based. To be a valid comparison,
we require the anchor to sound similar, yet noisier than the ad-
versarial examples. Otherwise, it could be trivially identified
and would not serve as a valid comparison.

Thus, we construct the anchor as follows: For a given set,
we scale and sum the noise of each of the three adversarial
examples and add this sum to the original stimulus, such that
1) each noise signal contributes the same amount of energy
and 2) the SNRseg of the anchor is at least 6dB lower than
the SNRseg of any of the adversarial examples in the set.

We have prepared a MUSHRA test with six test sets based
on three different audio types: two speech sample sets, two
music sample sets, and two sample sets with bird sounds.

These sets were selected among the sets of successful ad-
versarial examples against all four models. For each set, we
picked the samples whose adversarial examples produced the
highest SNR (i. e., the ”cleanest“) for the strongest version
of DOMPTEUR (Φ = 12). The target text remained the same
for all adversarial examples, and in all cases, the attacks were
successful within 2000 iterations.

Results To test our assumptions in the field, we have con-
ducted a large-scale experimental study. The G*Power 3
analysis [57] identified that a sample size of 324 was needed
to detect a high effect size of η2 = .50 with sufficient power
(1− β > .80) for the main effect of univariate analyses of
variance (UNIANOVA) among six experimental conditions
and a significance level of α = .05.

We used Amazon MTurk to recruit 355 participants (µage =
41.61 years, σage = 10.96; 56.60% female). Participants were
only allowed to use a computer and no mobile device. How-
ever, they were free to use headphones or speakers as long
as they indicated what type of listening device was used. To
filter individuals who did not meet the technical requirements
needed, or did not understand or follow the instructions, we
used a control question to exclude all participants who failed
to distinguish the anchor from the reference correctly.

In the main part of the experiment, participants
were presented with six different audio sets (2 of each:
speech/bird/music), each of which contained six audio stimuli
varying in sound quality. After listening to each sound, they
were asked to rank the individual stimulus by its perceived



sound quality. After completing of the tasks, participants
answered demographic questions, were debriefed (MTurk
default), and compensated with 3.00 USD. The participant re-
quired on average approximately 20 minutes to finish the test.

In a first step, we first use an UNIANOVA to examine
whether there is a significant difference between the six au-
dio stimuli and the perceived sound quality. Our analysis
reveals a significant main effect of the audio stimulus on the
perceived sound quality, F(5,12780) = 8335.610, p < .001,
η2 = .765. With an alpha level of > 1% for our p-value and
an effect size of η2 > .5, our result shows a high experimental
significance [58]. Thus, we can conclude that DOMPTEUR
indeed forces adversarial perturbations into the perceptible
acoustic range of human listeners.

To examine whether the effect remains stable across differ-
ent audio samples and listening devices, we further conducted
multiple regression analyses. We entered the audio stimuli as
our main predictors (first step) and the type of device (second
step) as covariates for each analysis. Our results remain sta-
ble across all audio types. The highest predictive power was
found in the speech sets, where 82.1% of the variance is ex-
plained by our regression model, followed by music (76.1%)
and bird sets (69.2%) (see Table 5 for details). Moreover,
we found a small yet significant positive coefficient for the
type of device used across all audio types. This finding sug-
gests that headphone users generally indicate higher quality
rankings, potentially due to better sound perceptions. The
results with listening device speaker are presented in Figure
7. Importantly, all results remain stable across the control
variables of age, gender, and first language.

In conclusion, the results strongly support our hypothesis
that DOMPTEUR forces the attacker into the audible range,
making the attack clearly noticeable for human listeners.

5 Related Work

In this section, we summarize research related to our work,
surveying recent attacks and countermeasures.

Audio Adversarial Examples Carlini and Wagner [59] in-
troduced targeted audio adversarial examples for ASR sys-
tems. For the attack, they assume a white-box attacker and
use an optimization-based method to construct general adver-
sarial examples for arbitrary target phrases against the ASR
system DEEPSPEECH [32].

Similarly, Schönherr et al. [17] and Yuan et al. [16] have
proposed an attack against the KALDI [35] toolkit. Both
assume a white-box attacker and also use optimization-based
methods to find adversarial examples. Furthermore, the attack
from Schönherr et al. [17] can optionally compute adversarial
examples that are especially unobtrusive for human listeners.

Alzantot et al. [60] proposed a black-box attack, which
does not require knowledge about the model. For this, the au-
thors have used a genetic algorithm to create their adversarial
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Figure 7: Ratings of participants with listening device
speaker. In the user study, we tested six audio samples, di-
vided into two samples each of spoken content, music and
bird twittering.

examples for a keyword spotting system. Khare et al. [61]
proposed a black-box attack based on evolutionary optimiza-
tion, and also Taori et al. [62] presented a similar approach in
their paper.

Recently, Chen et al. [63] and Schönherr et al. [18] pub-
lished works where they can calculate over-the-air attacks,
where adversarial examples are optimized such that these re-
main viable if played via a loudspeaker by considering room
characteristics.

Aghakhani et al. [64] presented another line of attack,
namely a poisoning attack against ASR systems. In con-
trast to adversarial examples, these are attacks against the
training set of a machine learning system, with the target to
manipulate the training data s.t a model that is trained with
the poisoned data set misclassifies specific inputs.

Abdullah et al. [19] provides a detailed overview of existing
attacks in their systemization of knowledge on attacks against
speech systems.



Countermeasures There is a long line of research about
countermeasures against adversarial examples in general and
especially in the image domain (e. g., [23–25]), but most of
the proposed defenses were shown to be broken once an at-
tacker is aware of the employed mechanism. In fact, due to
the difficulty to create robust adversarial example defenses,
Carlini et al. proposed guidelines for the evaluation of ad-
versarial robustness. They list all important properties of a
successful countermeasure against adversarial examples [30].
Compared to the image domain, defenses against audio adver-
sarial examples remained relatively unnoticed so far. For the
audio domain, only a few works have investigated possible
countermeasures. Moreover, these tend to focus on specific
attacks and not adaptive attackers.

Ma et al. [65] describe how the correlation of audio and
video streams can be used to detect adversarial examples
for an audiovisual speech recognition task. However, all of
these simple approaches—while reasonable in principle—are
specifically trained for a defined set of attacks, and hence an
attacker can easily leverage that knowledge as demonstrated
repeatedly in the image domain [25].

Zeng et al. [66] proposed an approach inspired by multi-
version programming. Therefore, the authors combine the
output of multiple ASR systems and calculate a similarity
score between the transcriptions. If these differ too much,
the input is assumed to be an adversarial example. The secu-
rity of this approach relies on the property that current audio
adversarial examples do not transfer between systems — an
assumption that has been already shown to be wrong in the
image domain [45].

Yang et al. [67], also utilize specific properties of the audio
domain and uses the temporal dependency of the input signal.
For this, they compare the transcription of the whole utterance
with a segment-wise transcription of the utterance. In the case
of a benign example, both transcriptions should be the same,
which will not be the case for an adversarial example. This
proved effective against static attacks, and the authors also
construct and discussed various adaptive attacks but these
were later shown to be insufficient [55].

Besides approaches that aim to harden models against ad-
versarial examples, there is a line of research that focuses on
detecting adversarial examples: Liu and Ditzler [68] utilizing
quantization error of the activations of the neural network,
which appear to be different for adversarial and benign au-
dio examples. Däubener et al. [69] trained neural networks
capable of uncertainty quantification to train a classifier on
different uncertainty measures to detect adversarial examples
as outliers. Even if they trained their classifier on benign
examples only, it will most likely not work for any kind of
attack, especially those aware of the detection mechanism.

In contrast, our approach does not rely on detection by aug-
menting the entire system to become more resilient against
adversarial examples. The basic principle of this has been
discussed as a defense mechanism in the image domain with

JPEG compression [70, 71] as well as in the audio domain
by Carlini and Wagner [59], Rajaratnam et al. [72], An-
dronic et al. [73], and Olivier et al. [74]. These approaches,
however, were only used as a pre-processing step to remove
semantically irrelevant parts from the input and thereby de-
stroy adversarial perturbations added by (static) attackers. In
contrast, we aim to train an ASR system that uses the same
information set as the human auditory systems. Consequently,
adversarial examples computed against this system are also
restricted to this set, and an attack cannot be hidden in inaudi-
ble ranges. Similar to the referenced approaches, we rely on
psychoacoustics and baseband filtering. However, we do not
solely employ this as a pre-processing step but train a new
system with our augmentation data (i.e., removing impercep-
tible information from the training set). This allows us to not
simply destroy adversarial perturbations but rather confine
the available attack surface.

6 Discussion

We have shown how we can augment an ASR system by
utilizing psychoacoustics in conjunction with a band-pass
filter to effectively remove semantically irrelevant information
from audio signals. This allows us to train a hardened system
that is more aligned with human perception.

Model Hardening Our results from Section 4.2 suggest
that the hardened models primarily utilize information avail-
able within audible ranges. Specifically, we observe that
models trained on the unmodified data set appear to use any
available signals and utilize information both from audible
and non-audible ranges. This is reflected in the accuracy
drop when presented with psychoacoustically filtered input
(where only audible ranges are available). In contrast, the
augmented model performs comparably well on both types of
input. Hence, the model focuses on the perceivable audible
ranges and ignores the rest.

Robustness of the System We demonstrated how we can
create a more realistic attacker, which actively factors in the
augmentations during the calculation of adversarial examples.
In this case, however, the attack is forced into the audible
range. This makes the attack significant more perceptible —
resulting in an average SNRseg drop of up to 24.33 dB for
speech samples. These results also transfer to other types
of audio content (i.e., music and birds tweeting) and are fur-
ther confirmed by the listening test conducted in Section 4.4.
In summary, the results of these experiments show that an
attack is clearly perceivable. Further, we find that the adver-
sarial examples, calculated with the adaptive attack, are easily
distinguishable from benign audio files by humans.



Implementation Choices In general, our augmentations
can be implemented in the form of low-cost pre-processing
steps with no noteworthy performance overhead. Only the
model needs to be retrained from scratch. However, the cost
of this could—in theory—be partially alleviated by transfer
learning. We leave this question as an interesting direction
for future research.

Robustness-Performance Tradeoff The results of the
adaptive attack (cf. Table 2) show that a larger margin Φ

leads to stronger robustness. Specifically, for Φ = 14, the
attacker was unable to find any successful adversarial exam-
ple in our experiments. However, this incurs an expected
robustness-performance trade-off as previous research indi-
cates that adversarial robustness is generally correlated with
a loss in accuracy [53].

In the case of our strong white-box attacker, we recom-
mend a margin Φ ≥ 12, which result in a degraded system
performance by at least 1.82 percentage points in terms of the
benign WER. In this case, though, we already granted the
attacker many concessions: full access to the model with all
parameters, ideal playback (i.e., adversarial examples are fed
directly into the recognizer and are not played over-the-air),
and an easy target. We chose to study our attacker in this
setting as this poses the strongest class of attacks and allows
us to gain meaningful insights.

In contrast to white-box attacks, black-box attack don’t
have direct access to the gradient and for example rely on sur-
rogate models [75] or generative algorithms [76] to construct
adversarial examples. Therefore, adversarial examples from
these attacks are typically more conspicuous and can even
introduce semantic changes such that humans can perceive
the hidden transcription if they are made aware of it [75].
Considering our augmentations, we expect that current black-
box attacks are able to construct valid adversarial examples
against DOMPTEUR. However, we expect these to be signif-
icantly more noisy (in comparison to the adaptive attacker)
as DOMPTEUR forces modifications to the signal into audible
ranges regardless of the underlying attack strategy. Especially
in a realistic over-the-air setting, we suspect much higher dis-
tortions since the attacker is much more constrained. In such
a setting, a smaller Φ might also already suffice. We leave
this as an interesting research direction for future work.

Improvement of the Attack The adaptive attack presented
in Section 4.3 can successfully compute adversarial examples,
except for very aggressive filtering. While Figure 4 clearly
shows that the attack has converged, we were still unable
to find working adversarial examples. However, other tar-
get/input utterance combinations may still exist, for which the
attack works and novel attack strategies should be studied.

Forcing Semantics into Adversarial Examples We have
shown how we can force adversarial audio attacks into the
audible range. This makes them clearly perceivable. Ulti-
mately, the goal is to push adversarial examples towards the
perceptual boundary between original and adversarial mes-
sage. Intuitively, adversarial examples should require such
extensive modification that a human listener will perceive
the target transcription, i. e., that the adversarial perturbation
carries semantic meaning. We view our work as a first suc-
cessful step into that direction and leave the exploration of
this strategy as an interesting question for future work.

7 Conclusion

In this work, we proposed a broadly applicable design princi-
ple for ASR systems that enables them to resemble the human
auditory system more closely. To demonstrate the principle,
we implemented a prototype of our approach in a tool called
DOMPTEUR. More specifically, we augment KALDI using
psychoacoustic filtering in conjunction with a band-pass fil-
ter. In several experiments, we demonstrate that our method
renders our system more robust against adversarial examples,
while retaining a high accuracy on benign audio input.

We have argued that an attacker can find adversarial ex-
amples for any kind of countermeasure, particularly if we
assume the attack to have full white-box access to the sys-
tem. Specifically, we have calculated adversarial examples
for DOMPTEUR via an adaptive attack, which leverages the
full knowledge of the proposed countermeasures. Although
this attack is successful in computing adversarial examples,
we show that the attack becomes much less effective. More
importantly, we find that adversarial examples are of poor
quality, as demonstrated by the SNRseg and our listening
test.

In summary, we have taken the first steps towards bridg-
ing the gap between human expectations and the reality of
ASR systems—hence taming adversarial attacks to a certain
extent by robbing them of their stealth abilities.
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A Targets

Table 6: Target utterances for the experiments with the
adaptive attacker. For the experiments we select 50 utter-
ances as target with an approximate length of 5s from the
WSJ speech corpus test set eval92.

Utterance Length Utterance Length Utterance Length

440c0407 5.47s 440c040i 5.07s 440c040j 4.08s
441c0409 4.91s 441c040c 5.57s 441c040l 5.26s
441c040m 5.50s 441c040s 4.58s 441c040y 4.08s
442c0402 5.14s 442c040c 5.69s 442c040d 4.80s
442c040h 4.63s 442c040k 5.37s 442c040w 5.21s
443c0402 5.05s 443c040b 4.69s 443c040c 4.73s
443c040d 5.54s 443c040j 4.61s 443c040l 4.23s
443c040p 4.10s 443c040v 4.82s 443c0417 4.55s
444c0407 4.76s 444c0409 5.20s 444c040i 4.98s
444c040n 5.18s 444c040u 4.37s 444c040w 5.52s
444c040z 4.29s 444c0410 4.16s 445c0409 5.43s
445c040j 4.99s 445c040l 5.64s 445c040w 4.92s
445c040x 4.68s 445c0411 4.34s 446c0402 5.59s
446c040b 4.10s 446c040d 5.18s 446c040e 4.94s
446c040f 4.66s 446c040o 5.33s 446c040p 5.04s
446c040s 5.18s 446c040v 4.07s 447c040g 4.64s
447c040p 5.23s 447c040z 4.68s
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