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Abstract
Wake word detection and verification systems often involve a
local, on-device wake word detector and a cloud-based verifica-
tion node. In such systems, the audio representation sent to the
cloud-based server may exhibit sensitive information that might
be intercepted by an eavesdropper. To improve privacy of cloud-
based wake word verification (WWV) systems, we propose to
use a privacy-preserving feature representation that minimizes
the automatic speech recognition (ASR) capability of a poten-
tial attacker. The proposed approach employs an adversarial
training schedule that aims to minimize an attacker’s word er-
ror rate (WER) while maintaining a high WWV performance.
To this end, we apply an adaptive weighting factor in the com-
bined loss function to control the balance between minimizing
the WWV loss and maximizing the ASR loss. We show that the
proposed training method significantly reduces possible privacy
risks while maintaining a strong WWV performance.
Index Terms: Wake word verification, wake word detection,
privacy, automatic speech recognition, adversarial training

1. Introduction
Recent advances in machine learning (ML) and signal process-
ing along with increasing availability of embedded devices have
led to a wide dissemination of voice-controlled human-machine
interfaces. Controlling a smartphone, a computer or even a ve-
hicle via voice brings several benefits but also implies obvious
privacy concerns and might lead to unsatisfactory performance
issues when automatic speech recognition (ASR) operates con-
tinuously. A common safe-guard is to activate the ASR system
only after specific voice commands, entitled wake words, are
uttered, e.g., ”Ok, Google” or ”Alexa”.

The process of spotting a wake word, denoted as wake word
detection (WWD), is usually performed at local device level in
order to hinder the transmission of sensitive information via a
(potentially) fallible communication medium [1]. The field of
single-device solutions for WWD is continually progressing,
with performance and computational efficiency taking a cen-
tral role [2, 3]. Nevertheless, it is common practice in current
Internet-of-Things (IoT) implementations to transmit raw audio
or audio features via the Internet to a more resourceful cloud-
based system for an improved WWD decision [4, 5, 6], which
we denote as wake word verification (WWV). The sharing of
WWV-purposed audio or audio features implies inherent pri-
vacy risks, as such data can be intercepted by an ASR-based
eavesdropper and used to perform speech-to-text transcription
[7]. This scenario is further illustrated in Figure 1.

Given the proposed framework, we provide a proof-of-
concept for privacy-preserving high-level feature representa-
tions that maintain full functionality for cloud-based WWV. At
the same time, upon interception, this feature representation is
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Figure 1: Privacy risks in wake word detection (WWD) and
verification (WWV) systems. Left: local WWD, no feature in-
terception is possible. Right: WWD with cloud-based WWV:
low WWD confidence results in transmission of data to a cloud-
based WWV system. This data can be intercepted by an attacker
and used to perform speech-to-text transcription.

designed to reduce the privacy risks posed by an ASR-based at-
tacker. Such an approach follows the privacy-by-design (PbD)
principle stipulated by the European Union General Data Pro-
tection Regulation (GDPR) [8] and might be used as an extra
layer of privacy, in addition to other privacy-preserving tech-
niques like data encryption. In this work we focus on alleviating
some of the aforementioned privacy risks rather than optimizing
the performance of a cloud-based WWV system in comparison
to a local detector. We assume that the cloud-based WWV sys-
tem with (in principle) unlimited computational resources and,
e.g., more frequently updated back-end model will always out-
perform a locally-embedded WWD system.

Several methods for improving privacy at the feature level
in distributed audio applications have been proposed, ranging
from adversarial [9] and Siamese [10] to variational information
training [11]. These had the purpose of disentangling sources of
variations such as speaker gender or domestic activity informa-
tion from speaker identity. The methods have not been applied
in WWD or WWV scenarios and no ASR-based attack on inter-
cepted features has been previously studied.

To this end, we define our baseline WWV system and di-
vide it into a feature extractor, which we envision residing on
the local device, and a verifier residing on the server side. It is
assumed that the feature extractor is public (white-box attack)
and provides the feature representation Z. This allows the at-
tacker to train an ASR system which can be further used to per-
form speech-to-text transcription on intercepted features. It is
shown that Z, although designed with the end goal of WWV,
still carries a significant amount of ASR-accessible data.

We then propose to use dimensionality reduction and adver-
sarial training in order to transform the baseline WWV system
into a privacy-preserving WWV system. As a consequence, a
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Figure 2: WWV system (blue box) and attacker system (orange
box). The feature extractor computes either Z (baseline system)
or Z (privacy-preserving system). While both systems use a
similar network topology, the latter also employs adversarial
training and optionally also a bottleneck layer (BN).
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Figure 3: Flow chart of the multi-task learning setup: A high-
level feature extractor f feeds two parallel dense output layers.
Only the upper path is further used for the baseline WWV sys-
tem.

new privacy-preserving feature representation Z is computed
and is tested against an ASR-based eavesdropper, showing a
significant decrease in ASR-related privacy risks with only a
minor loss in WWV performance.

The paper is structured as follows: in Section 2 we present
the proposed baseline WWV system, followed by a description
of the ASR-based attacker and the privacy-preserving WWV
system. The proposed privacy-preserving training approach is
presented in Section 3, followed by the experimental setup and
results in Sections 4 and 5. Conclusions are drawn in Section 6.

2. System description
2.1. Baseline WWV system

Based on the work of Sun et al. [3], we use a time-delay neural
network (TDNN) [12] as local feature extractor f , transforming
low-level audio features X into a high-level feature representa-
tion Z. The extracted features Z are then processed by a dense
layer w with output Yw and a subsequent speech decoder dw,
simulating a cloud-based WWV application. The topology of
the WWV architecture is depicted in the blue box in Figure 2.

Closely following the implementation in [3], the feature ex-
tractor f is initialized as an acoustic model for ASR, employ-
ing a separate dense output layer s with output Ys and ASR-
purposed training targets. After initialization, layers s and w
are concomitantly used in conjunction with f for joint training
of ASR and WWV, as depicted in Figure 3. This multi-task
learning approach minimizes the combined loss function

min
θf,θw,θs

[λLw(θf, θw) + (1− λ)Ls(θf, θs)], (1)

w.r.t. the involved weights and biases, θf, θw, and θs, where Lw

and Ls describe the WWV and the ASR loss, respectively, and
the weighting factor λ controls the contributions of the two
goals. More information about the initialization and multi-task
learning is provided in Section 4.3. After multi-task learning,
only the feature extractor f and the subsequent output layer
w are further used in our baseline WWV system alongside the
lattice-based speech decoder dw, which is not trained but only
used for evaluation purposes, as described in Section 4.4.

2.2. ASR-based attacker

We consider an attacker that intercepts the exported feature rep-
resentation via eavesdropping and aims to obtain the speech
transcription using ASR. As depicted in the orange box in Fig-
ure 2, the proposed attacker employs a single dense layer a with
output Ya, followed by a speech decoder da. The privacy risk re-
sulting from using the proposed WWV model is then measured
by the attacker ASR performance. Considering that the baseline
WWV model relies on an ASR-based initialization via transfer
learning and employs the presented multi-task training scheme,
a potentially high privacy risk of transcribing speech from Z
becomes obvious. This has also been confirmed by our experi-
ments presented in Section 5.

2.3. Privacy-preserving WWV system

Our work aims to tackle the aforementioned privacy risks of
WWV systems by developing a privacy-preserving high-level
feature representation Z, which is also indicated in Figure 2
and further detailed in Section 3. By using this proposed feature
representation, we want to obtain a WWV performance similar
to that of the baseline WWV system but at the same time dras-
tically decrease the attacker’s ASR performance.

3. Privacy-preserving training
3.1. Dimensionality reduction

A first approach for tackling the ASR-related privacy risk is to
reduce the amount and the complexity of information that can
be represented in Z. We first perform the ASR initialization
described in Section 2.1 and then add a bottleneck (BN) layer of
sizeD to the feature extractor f in order to compress the feature
space. Thus, we decrease the capacity of Z to represent detailed
speech information. We then continue with the same multi-task
learning procedure described in Section 2.1 and systematically
modify the size of the BN layer (and thus also of Z) in order to
find a suitable trade-off between WWV and ASR performance.
Results are shown in Section 5.

3.2. Adversarial training

The second route to lower ASR-related privacy risks, in con-
junction with a reduced dimensionality of Z, is the usage of an
adversarial training schedule. This can be split into an initial
pre-training step followed by two alternating adversarial steps.

In the pre-training step, we apply the same multi-task train-
ing procedure as in Section 3.1. This already produces a
well-performing privacy-preserving WWV system. In order to
further deprecate the attacker’s ASR performance, additional
training is performed by taking into consideration the attacker
model. This is done in several adversarial iterations of the fol-
lowing two steps:

1. Further train the WWV system by considering the at-
tacker model: Adapt Z so that it minimizes WWV loss
Lw while simultaneously maximizing the attacker’s ASR
loss La. The trade-off between WWV and ASR per-
formance is controlled by the scaling factor λ. In this
new system, the attacker weights and biases θa are frozen
while only the parameters θf and θw of the WWV system
are updated according to:

min
θf,θw

[λLw(θf, θw)− (1− λ)La(θf, θa)] . (2)

2. Attacker training: Perform attacker ASR training using
the intercepted high-level feature representation Z from



the previous step. The feature extractor weights and bi-
ases θf remain fixed while only the attacker’s parame-
ters θa are now updated according to:

min
θa

[La(θf, θa)]. (3)

The training process is further optimized by dynamically adapt-
ing the weighting factor λ in every training iteration. This pre-
vents a quickly increasing La from dominating the combined
loss term in (2), which would lead to a highly unbalanced train-
ing process. Therefore, we set

λ = 1− Lw(θf, θw)

ψLa(θf, θa)
. (4)

During training, a strong attacker counteracts the goal of im-
proving privacy-preservation while a poorly performing at-
tacker can have too much of a negative influence on the WWV.
Therefore, we set ψ = 20, which empirically leads to a good
balance between these constraints. Note that we used a state-of-
the-art ASR framework (see Section 4) as attacker and therefore
imply full access to the attacker’s model and all its parameters.

4. Experimental setup
4.1. Wake word selection

We use ”Mister” as the designated wake word, as it consists
of two syllables and therefore has a good pronunciation length.
Very short wake words, like ”Hi”, ”Stop”, or ”Down”, might
cause a high number of false detections, whereas very long
wake words might not be sufficiently user-friendly. Addition-
ally, ”Mister” has a reasonably high number of occurrences in
the dataset (see Table 1), which is required for training and test-
ing a solid baseline system.

4.2. WWV and ASR database

All experiments in this work utilize the LibriSpeech
database [13]. We only use clean data for the proposed con-
cept as to better observe the limitations of both WWV and ASR
attacker. In both cases, we employ the train-clean-100 subset
for training, dev-clean for validation, and test-clean for testing.
In order to extend the WWV test set, we also add all occur-
rences of ”Mister” from the train-clean-360 subset. Table 1
shows the number of positive examples (occurrences of ”Mis-
ter”) and negative examples (every other word occurrence) in
the different sets.

Table 1: Positive and negative examples of the wake word ”Mis-
ter” in the used datasets. For wake word verification, 3985 fur-
ther positive examples are added to the test set.

Set Pos. examples Neg. examples

Training 1199 990101
Validation 52 54402
Evaluation 48+3985 52576

4.3. Neural network configuration and training

Table 2 displays the structure of our TDNN feature extractor f ,
including the considered context size and layer dimensionality.
After each layer, a batch normalization layer is inserted. The
subsequent output layers w, s, and a map the high-level feature
representations Z/Z to context-dependent phonetic states of
hidden Markov model (HMM)-based language models (LMs).

Table 2: Context and dimensionality of the layers of the TDNN
feature extractor f . The input layer processes the narrow frame
context, while higher layers consider wider context ranges.

Layer Context Dimensionality

Input {−2,−1, 0,+1,+2} 512
Layer 1 {−2, 0,+2} 512
Layer 2 {−4, 0,+4} 512
Output {0} 1500

We use the Kaldi toolkit [14] to build a large-vocabulary LM for
ASR and a highly reduced LM for WWV, containing phonetic
representations of ”Mister” and background/noise fillers.

As low-level input features X , we used the first 13 Mel-
Frequency Cepstral Coefficients (MFCCs) [15] and their first
and second derivatives, calculated over frames of 25 ms with a
10 ms frame shift. Training targets have been created by per-
forming forced alignment in Kaldi, using an auxiliary Gaus-
sian mixture model (GMM) acoustic model and the LMs on the
training set.

The neural networks in this work have been implemented
in Python, utilizing the PyTorch-Kaldi toolkit [16] in addition
to the TDNN implementation from [17]. All networks have
been trained by minimizing the cross-entropy losses Lw, Ls,
and La using the Root Mean Square Propagation (RMSprop)
optimizer. We used an initial learning rate of lr = 0.008 for all
training processes except for training the WWV system during
the adversarial iterations. Here we started with lr = 0.005 and
gradually decreased across training iterations. To prevent over-
fitting, all layers of the feature extractor f apply a dropout rate
of 0.15 during training.

The baseline WWV system was initialized with 30 epochs
of ASR training, followed by 25 epochs of multi-task learning,
with or without an inserted BN layer. Here, we empirically set
λ = 0.99. Each adversarial iteration was scheduled as follows:
in the first step, the WWV system was trained for a minimum
of 15 and a maximum of 30 epochs or until La > 4000. In the
second step, the attacker was trained for 5 epochs. In order to
best observe the evolution of Z across adversarial iterations, we
separately train a stronger attacker using 25 additional epochs of
ASR training after each adversarial iteration. This model does
not influence the actual adversarial training process.

4.4. Evaluation metrics
We composed the acoustic and language models into weighted
finite-state transducers (WFSTs) [18] and employed Kaldi’s
WFST-lattice-decoder to perform speech decoding with the
neural network outputs. For ASR evaluation, we calculated the
word error rate (WER) for the given evaluation set with the de-
coded outputs of layer s or a. For WWV, we use detection error
trade-off (DET) curves, plotting the false alarm rate against the
false reject rate. We compared the decoded outputs of layer w
with each utterance in the test set. We assumed a correct detec-
tion if the number of detected wake words matched the num-
ber of actual occurrences in the respective utterance. Different
points on the DET curves have been calculated by modifying
the ratio between acoustic and language model weights in the
Kaldi decoder, prioritizing either the language or acoustic tran-
sition probabilities in the decoding graph, as indicated in [14].

5. Results and discussion
In Figure 4 we present the performance of the baseline WWV
system along with the first version of privacy-preserving WWV
system, which uses only dimensionality reduction via a BN
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Figure 4: Wake word verification (WWV) detection error trade-
off (DET) curves for the baseline WWV system and the privacy-
preserving WWV system. The latter is based solely on dimen-
sionality reduction, where D indicates the size of the bottle-
neck layer. The performance of an automatic speech recogni-
tion (ASR) attacker using the intercepted features is indicated
by the word error rate (WER).

layer. The size D of the BN layer is systematically varied. The
baseline WWV system performs similarly to other state-of-the-
art implementations [2, 3]. However, an attacker that has inter-
cepted these features can easily use them for ASR, obtaining a
WER of 15.95%. When we include the BN layer and reduce
D, we observe increasing WER for the attacker. At the same
time, WWV performance is increasingly reduced. Although we
can identify suitable operational points (e.g. for D = 16 at a
false alarm rate of 0.5 % and a false reject rate of 1 %) with a
good trade-off between WWV and ASR, we strive for further
improvements by employing adversarial training.

Based on previous observations, we now use adversarial
training in conjunction with a BN size of D = 16 and addi-
tionally in conjunction with a WWV system without a BN layer
for comparison. Training is performed as indicated in Section
4.3, where after each adversarial iteration (the two alternating
steps described in Section 3.2) we separately train a stronger
attacker to observe the limitations of Z. The results are pre-
sented in Figure 5. It can be seen that more adversarial iter-
ations have a positive effect on the privacy-preservation of Z
by strongly increasing the WER of attackers. The increase of
the WER over the iterations is much more significant for the
system that includes the BN layer: after the 15-th adversarial it-
eration we achieve 90.81 % WER compared to 55.21 % for the
non-BN-layer approach.

Finally, we examine the impact of the adversarial training
procedure on WWV performance by comparing the two afore-
mentioned privacy-preserving WWV systems (BN layer of size
D = 16 and without a BN layer). We specifically consider the
state before adversarial training (Ai = 0) and after 15 adver-
sarial iterations (Ai = 15), cf. Figure 6. At the desired operat-
ing point where the false alarm rate is 0.5 % [2], both systems
show a similar performance close to 1.4 % false reject rate for
Ai = 15. Furthermore, comparing Ai = 0 and Ai = 15, the
loss in WWV performance is smaller for the BN-based system
than for the non-BN system. Thus, while both systems perform
similarly on the WWV task, the BN-based system achieves a
much larger attacker WER of 90.81%.

Figure 5: ASR word error rate (WER) vs. adversarial training
iterations of a strong attacker when using privacy-preserving
wake word features without a bottleneck (BN) layer (no-BN)
and with a BN layer of size D = 16. Iteration 0 indicates the
state before adversarial training.
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Figure 6: Wake word verification DET curves for adversarial-
training-based privacy-preserving WWV systems with a bottle-
neck (BN) layer of size D = 16 and without a BN layer. Perfor-
mance before adversarial training (Ai = 0) and after Ai = 15
adversarial iterations are displayed.

6. Conclusions & Future Work
We have proposed a privacy-preserving distributed WWV sys-
tem comprising local on-device feature extraction and cloud-
based post-processing. In this scenario, an ASR-based attacker
may intercept the features transmitted between local device and
cloud server and may use them to transcribe speech. It has been
shown that features specifically trained for WWV also carry a
significant amount of speech-related information. We have pro-
posed to alleviate this ASR-related privacy risk by employing
a feature dimensionality reduction using a BN layer along with
adversarial training. This approach has been proven successful
as we were able to maintain low false-alarm and false rejection
rates while drastically reducing an attacker’s ASR performance.

While this work serves as a proof of concept, we expect it to
be even more useful when combined with fusion approaches in
distributed sensor scenarios. We aim to expand this work into
more complex scenarios that will include reverberant signals
and multiple distributed smart home devices. Additionally, we
plan to examine the impact of different wake word lengths on
WWV performance.
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