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Abstract—Deep neural networks have proven highly effective
at speech enhancement, which makes them attractive not just as
front-ends for machine listening and speech recognition, but also
as enhancement models for the benefit of human listeners. They
are, however, usually being trained on loss functions that only
assess quality in terms of a minimum mean squared error. This
is neglecting the fact that human audio perception functions in
a manner far better described by logarithmic measures than
linear ones, that psychoacoustic hearing thresholds limit the
perceptibility of many signal components in a mixture, and that
a degree of continuity of signals may also be expected. Hence,
sudden changes in the gain of a system may be detrimental.
In the following, we cast these properties of human perception
into a form that can aid the optimization of a deep neural
network speech enhancement system. We explore their effects on
a range of model topologies, showing the efficacy of the proposed
modifications.

Index Terms—speech enhancement, denoising, psychoacous-
tics, slow feature analysis

I. INTRODUCTION

Speech enhancement and denoising have been around for a
long time. Early works of spectral subtraction algorithms date
back to 1979 [1], and although the algorithms have evolved,
the problem has stayed the same; remove noise from speech
recordings and make speech more intelligible.

The relevance of this topic, however, increased with the
availability of mass-market telecommunication and especially
mobile devices, as these are used in nearly all real-world
situations and noise conditions. In recent years, this field of
research has profited from the availability of massive and
affordable computing power, together with an abundance of
recorded or realistically generated data, e. g., [2]. This has
enabled a proliferation of methods based on artificial neural
networks, or more generally driven by the machine-learning
idea of autonomously discovering optimal structures and pa-
rameter sets, e. g., [3]–[6]. These methods typically need to be
trained on large-scale databases with respect to an optimiza-
tion criterion, which is expressed as a task-appropriate loss
function. One of the most commonly used examples of such
a loss function is the mean squared error (MSE), the square
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of the Euclidean distance between the processed data and a
clean reference. However, recent works have shown how more
specialized functions can be utilized to optimize a neural net-
work model. Hence, for the optimization of audio processing,
it is interesting to include psychoacoustic principles and thus
to take the human perception into account [7]. For example,
the work in [8] optimized speech enhancement algorithms
directly on a short-time objective intelligibility (STOI) [9]
metric approximation. This approach works on par with,
but could not outperform an MSE baseline and thus raises
the question of what the best metric may be. Additionally,
the framework introduced in [10] showed that incorporating
psychoacoustic metrics into the loss function can be beneficial
for neural network training. Lastly, a metric that evaluates
the contributions of both signal-to-distortion-ratio (SDR) and
perceptual-evaluation-of-speech-quality (PESQ) [11] was in-
troduced in [12].

Recently, the idea of slow feature analysis (SFA) [13] has
also taken hold in the deep learning community. The goal of
SFA is to find a representation of a signal in such a way that
this representation is slowly varying over time. References and
examples of applications of SFA can be found in the field of
computer vision [14], [15], as well as in audio processing [16].
In 2019, a system that uses an SFA loss to optimize for a slow
representation of an audio signal was proposed in [17], but this
resulted in a collapse of the latent space of the employed auto-
encoder. In our work, we propose a normalization of the plain
differential SFA loss, which solves this problem.

Not only the loss, but also the topology of the neural
network is a pertinent point. A variety of possible model
structures has been proposed and evaluated, e. g., a wave-
net-based model [17], which optimizes network parameters
directly on the time domain signal differences of clean and
processed speech. Although wave-net encoders produce very
natural sounding signals, they come with the drawback of
requiring a large-scale training dataset. Therefore, we will
incorporate the general idea of calculating parts of the loss
directly on the signal in the time domain, but with a classical
short-time Fourier transform instead of the wave-net architec-
ture.

Concretely, we will evaluate a model topology that is based
on classical frequency masking algorithms. As shown in [18],



it is possible to use time-frequency masking to recover the am-
plitude spectrum of a speech signal, when it is superimposed
by a number of other sources. This becomes possible due to the
sparsity of speech, when represented in an appropriate time-
frequency domain, a characteristic that is referred to as W-
disjoint orthogonality by Yilmaz and Rickard.

Many works have exploited this property to separate a
speech source of interest from interferers by estimating such
a time-frequency mask, e.g. based on beamforming [19] or
independent component analysis [20] for multi-channel en-
hancement, or on statistical properties of speech versus noise
[21] or of speech over time [22] for the single-channel case.
As we can see in [23], [24], it is also possible, and highly
effective, to use a DNN to calculate such a soft mask for
the amplitude spectrum of a single-channel input signal. This
mask is then used to gate the input magnitude spectrum and
it hence should encode the estimated proportion of the clean
speech energy in all time-frequency bins.

In contrast to [23], we will use a multi-layered LSTM in-
stead of explicit recurrent smoothing in order to train our setup
end-to-end and let the network learn the correct transition
rates between masks. Since we are primarily investigating the
impact of different loss functions on enhancement quality, we
did not try complex model topologies as described in [25]; also
we did not look into generative adversarial network topologies
[3]. Nevertheless it will be interesting for future research to
investigate the impact of phase-aware algorithms such as [25]–
[27] and to employ our suggested loss functions in a broader
range of architectures.

II. SYSTEM DESIGN

In the following section, we describe our system architecture
and training process as well as the high-level overview of the
proposed objective functions.

A. Recurrent Soft Gating Filter

Our proposed models are based on classical speech en-
hancement structures. As shown in Figure 1, they utilize an
STFT to transform the signal into the time-frequency domain,
where they apply a point-wise gain to suppress non-speech.
A corresponding inverse STFT (iSTFT) is applied to the
resulting spectrogram, using the phase of the input signal for
reconstruction.

The frame length of the STFT should not exceed the short-
time stationarity of speech signals. Our choice of 16ms frame
length and 4ms frame shift is motivated by this consideration
and is also within the typical ranges of frame-lengths in similar
approaches, cf. [5], [18]. Since we use a differentiable im-
plementation of this spectral transformation, we can optimize
the enhancement system parameters directly on losses that are
calculated in the time domain.

All models utilize Long Short-Term Memory (LSTM) [28]
cells to control this soft mask, similarly, e. g., to [12], which
enables them to take temporal context into account. As shown
in Figure 1, it fades out frequency content that is not speech
by multiplying the amplitude spectrum with a mask that is

x̃b,t STFT iSTFT
∠(X̃)b,k

|X̃|b,k ×

LSTM σ(hb,k)

hb,k

x̂b,t

Fig. 1. In the proposed model, an STFT is applied to the input signal. The
resulting magnitude spectrum |X̃|b,k is multiplied point-wise with a soft mask
σ(hb,k). We use the phase of the noisy signal ∠(X̃)b,k for reconstruction.
During the training phase, the representation hb,k is also passed to the loss
function.

calculated from the noisy input amplitude spectrum. Moreover,
the LSTM topology can be bidirectional, which means that
future context can also be considered in the model. While
this results in a loss of causality and real-time applicability
of the speech enhancement model, it allows for an optimum
enhancement.

Lastly, we can reconstruct the clean signal from the masked
amplitude in conjunction with the input signal phase. Note that
the noisy input phase, which is used to synthesize the signal, is
only a stand-in for the clean speech phase, which is unavailable
in this context. This has been done similarly in the majority
of previous works, see, e. g., [20], [23], [29].

We tested our model with different numbers of LSTM
layers and compared the results for uni- and bidirectional
LSTMs. The number of LSTM output neurons is set to the
number of frequency bins of the spectrogram, or twice this
size for bidirectional topologies. The subsequent sigmoid layer
generates a frequency-dependent soft-mask, which is used to
filter the amplitude of the input signal. We chose the sigmoid
function because it ensures a gain smaller than one. This is
important since we are working with additive noise and the
amplitude spectrum of a single input source is more sparse
than the amplitude spectrum of the noisy superposition of
multiple sources. Hence, the denoising algorithm should also
be designed in such a way that it favors an increase of sparsity.
Moreover, the sigmoid function ranges smoothly from 0 to 1,
as is desired for the calculation of soft time-frequency masks.

B. Training Process Overview

Our framework is shown in Figure 2. As the primary input,
we load a batch of clean speech signals with the indexing
structure xb,t, where b denotes the batch entry index and t
the sample index in the discrete time domain, as encoded in
the raw audio file. We use zero-padding to the length of the
longest sequence in each batch. We add randomly chosen noise
to every clean signal in the batch, which yields the noisy input
signals denoted as x̃b,t.

This degraded batch is fed into the denoising model de-
scribed in Section II-A, which returns the processed signal
x̂b,t and a signal representation hb,k. Note that k is a frame
index in the spectral domain. In contrast, t is the sample index
of the raw audio file.
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Fig. 2. Depiction of the overall training setup. Noise nb,t is added randomly.
The two outputs of the model are the reconstructed signal x̂b,t and the
signal representation hb,k . The phoneme boundaries are encoded into the
weights wb,k , which are used in the loss function. The psychoacoustic hearing
thresholds pb,k are passed to the loss function as well. The optimizer tunes
the model parameters.

During training, we use different losses, which are described
in Section II-C. Three of these losses measure the distance
between x̂b,t and xb,t. The fourth loss is calculated on tem-
poral information of the representation hb,k. We implemented
the denoising framework with PyTorch [30] and the SciPy
stack [31]. The models are trained with the Adam optimizer
with decoupled weight decay (AdamW) [32], with a fixed
learning rate of 0.0005.

To measure the quality of a denoising algorithm, different
metrics are available. Here, we use PESQ and the short-time
objective intelligibility measure (STOI) for evaluation. The
PESQ metric is standardized by the ITU in recommendation
P.862 and is designed to asses the quality of telecommunica-
tion lines perceived by human listeners [11].

C. Speech Enhancement Losses

We are interested in designing loss functions that are es-
pecially amenable to the goal of speech enhancement. Speech
has numerous characteristics that can be utilized for the design
of loss functions. Additionally, as we carry out speech en-
hancement for human listening, it is also important to improve
perceptual quality, which implies a set of further desired
characteristics, and hence, another set of loss functions. None
of the loss functions can, however, be expected to work well in
isolation. Therefore, in the course of this study, we conducted
experiments with different combinations of optimization goals.

1) Mean Squared Error: The first loss, which we will
consider as a baseline loss, is the well known and widely used
mean squared error loss (MSE).

2) Mean Squared Logarithmic Error: The second loss is the
mean squared logarithmic error (MSLE). Since the original
clean signal, as well as the processed signal, are available
in the time domain, this loss is calculated as the batch- and
sample-wise mean over

LMSLEb,t
∝ (log(|xb,t|+ 1)− log(|x̂b,t|+ 1))

2 . (1)

The parts of the sequences that are appended during zero
padding are excluded in the computation.

3) Psychoacoustics: The psychoacoustic loss (PSY) ap-
proximates the human listening experience by utilizing hearing
thresholds. Psychoacoustic hearing thresholds are an effective
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Fig. 3. An example of the signal-to-mask ratio (SMR) (top), shown together
with the clean audio spectrogram (bottom), from which it was derived.

measure of audibility and describe how the dependencies
between frequencies and across time lead to masking effects
in human perception [33]–[35].

The hearing thresholds are therefore useful to identify and
penalize those time-frequency bins, that deviate from the
clean signal by a perceptible amount. To quantify the hearing
thresholds, we calculate the signal-to-mask ratio (SMR) pb,k,
which describes the masking effect via the logarithm of
the ratio of the clean signal energy to the psychoacoustic
masking threshold. Hence, the higher the value of the SMR,
the more noise can be added to the signal without being
perceivable by human listeners. An example of the SMR and
its corresponding audio signal is given in Figure 3.

To obtain the SMR, we utilize the psychoacoustic model
of the MP3 compression algorithm [36]. Our proposed loss is
defined as the mean over

LPsyb,k ∝ ReLU

(
20 log10

|X̂b,k|
|Xb,k|

− pb,k

)
, (2)

where Xb,k is the target signal and X̂b,k the estimated signal,
both in the frequency domain. Equation (2) thus assesses
the degree to which the added noise exceeds the hearing
thresholds, and sets the cost of all remaining time-frequency
bins, which do not exceed the hearing thresholds, to zero.

4) Slowness Loss: The slowness loss (SLOW) acts as a
regularisation term. By penalizing rapid changes in the output
nodes of the LSTM in the gating algorithm, we use the idea
of slow feature analysis (SFA) under additional consideration
of the phoneme annotation. The idea behind this is to allow
the filters to change more easily near phoneme boundaries.
Therefore, we use a forced alignment tool, which utilizes a
trained automatic speech recognizer for the English language
to calculate the phoneme transcription of our speech sam-
ples [37]. Those transcriptions are only needed in the training
phase of the algorithm.



The main goal of SFA is to find a representation of an
input signal which varies slowly over time. This optimization
for slowness has shown its utility in recent publications and
was introduced in [13], [38].

The slowness of the representation, in our case the output
of the final LSTM layer hb,k, is calculated via

S(hb) ∝
K−1∑
k=1

wb,k||hb,k+1 − hb,k||22. (3)

The weight wk is set to zero if hk is close to a phoneme
boundary and to one if hk is in the middle of a phoneme
frame. Specifically, wk is calculated in the following way:
First, we start with the integer encoded phoneme annotation
bb,k and generate a sequence of ones and zeros

δbb,k =

{
1 if bb,k+1 − bb,k 6= 0
0 otherwise . (4)

Subsequently, we convolve the resulting sequence δbb,k with
a trapezoidal window

tk = [0.25, 0.5, 0.75, 1, 1, 1, 0.75, 0.5, 0.25] (5)

to smooth the phoneme boundary mask over time. The result-
ing sequence is called δb̂b,k. Finally, we set

wb,k = 1−max
(
1, δb̂b,k

)
. (6)

This ensures that the representation is allowed to change
when the spoken phoneme changes. In order to avoid a trivial
solution, which results in the collapse of the representation
space [17], we apply an additional scaling

LSlow ∝
∑
∀b

[
S(hb)∑K

k=1 ||hb,k||22

]
. (7)

To perform a full SFA, it is common to apply a zero mean
and unit variance constraint as well as to require decorrelation
and ordering by slowness of the components of the represen-
tation. This is usually done by solving an eigenvalue problem.
For this work, only slowness will be considered, since it is
the most relevant property in the context of a denoising task.
Because we are not enforcing unit variance, we are using
normalization to prevent the trivial solution.

III. EVALUATION

In this section we describe the training configuration and
evaluation. We first introduce our baseline methods and
database, followed by a description of the evaluation metrics.

A. Baseline Method

As a first baseline, we use the well-known improved
minima-controlled recursive averaging (IMCRA) algorithm
[39]. Furthermore, we use models that are trained on the MSE
loss as a second baseline.

B. Dataset

The Mozilla Common Voice database (MCV) is a
community-driven speech corpus that is permanently under
development. It consists of over 1,965 hours of spoken and
annotated recordings in 29 different languages. The MCV is
published under a Creative Commons (CC-0) license and is
publicly available. The English sub-corpus consists of 780
hours recorded from approximately 39,577 speakers, cf. [2].
Every utterance of this database is a separate file, which
comprises a single sentence. Mozilla provides a word-level
transcription for every utterance.

In order to validate our approach, we use a train-test-
development split of this database. Cross-validation is not per-
formed due to the excessive training time of the experiments.
For this work, we use a subset of 56,843 files recorded from
1,577 different English speakers as our training set. Due to the
crowd-sourcing nature of the database, these files vary in qual-
ity between studio-quality and low-quality recordings. This
range of possible input devices closely resembles recordings
in the field. Our development set consists of 11,499 files and
our test set contains 100 files. The length of recordings in our
database ranges from 2.3 to 7.2 seconds.

For the noise, we use two databases: the open-source
DEMAND corpus [40] and the RSG-10 corpus [41]. The
DEMAND corpus contains 16-channel recordings of different
natural environments, like street or kitchen noise. We only
used the first of the 16 channels. The RSG-10 corpus is another
collection of noises, stemming from a wide variety of noise
conditions.

Analogously to the clean signals, we applied a train-test-
development split to the noises as well. Since we are perform-
ing noise-reduction speech enhancement, we excluded noise
that contains intelligible speech. The noise level for training
is chosen uniformly between −10 and 30 dB RMS SNR to
cover a wide range of noise levels. Furthermore, the segment
of the noise, which is added to the speech signal, is chosen
randomly throughout the training.

C. Experimental Setup

We trained our models with different losses and parame-
ter combinations for a maximum of 100 epochs. As com-
binations of loss functions, we considered MSE, MSLE,
MSLE+PSY, MSLE+SLOW, and the combination of all,
MSLE+PSY+SLOW. The MSE loss is not taking any psycho-
acoustics or temporal information into account. It is, therefore,
considered as a baseline and not combined with the other
metrics.

In a first experiment, we assessed the impact of specific
model parameter settings, testing LSTM layers counts from
3 to 4 and comparing bidirectional and unidirectional LSTM
topologies on a slightly larger version of our database. Here,
we selected the weights for the losses as wMSLE = 1, wPSY =
wSLOW = 0.0001 and the learning rate of the optimizer as
α = 0.0005. The batch size was selected to be 24. In Table I
we list the corresponding results.



For a thorough evaluation of the optimized model topology,
we ran experiments using all considered combinations of
loss functions, with a layer count of 4 and a bidirectional
LSTM. To also understand the impact of the stationarity of
noise on the performance of the system, we randomly added
noises from the RSG10 database, grouped into stationary
and non-stationary types. For this purpose, we considered
the noise files hfchannel, pink, volvo, white, buccaneer2, f16,
leopard and m109 as stationary; whereas the files babble,
factory1, factory2, buccaneer1, destroyerengine, destroyerops
and machinegun contain transient noises as well as babble
noise and thus are considered non-stationary. We used the
first 60% of each file for training, the last 20% of each file
for testing; the remaining 20% of the files were used in the
development set.

Furthermore, we used four different noise levels,
[0, 5, 10, 15] dB ITU-T P.56 speech signal-to-noise-ratio
(SNR), which we calculated using the Maracas package [42].
This leads to a test set size of 100 files per group and SNR.
The same noisy test set is used for every model and parameter
set.

Since neither STOI nor PESQ values of our result
files are normally distributed, we used a non-parametric
Mann–Whitney–Wilcoxon statistical test [43] to check the
significance of the improvement of our method relative to the
baselines. The p-value of the hypothesis test is indicated by
the number of stars, with the attribution ? ? ?? : p ≤ 0.0001,
? ? ? : 0.0001 < p ≤ 0.001, ?? : 0.001 < p ≤ 0.01 and no
line indicating not significant.

IV. RESULTS

An overview of the STOI metric can be found in Figure 4,
which shows that our model outperformed IMCRA with a high
significance regardless of the optimization criterion w.r.t. to the
STOI metric. From this plot, we can also conclude that the
STOI metric is more suited to test the general functioning of
a speech enhancement model than to compare the fine-tuning
of models. Due to the upper bound of the STOI metric, the
values saturate above a certain model quality, which makes it
hard to distinguish between different high quality models.

In the following, we will look at the PESQ values in
more detail: The PESQ results of our method, as well as
our IMCRA and MSE baseline, are depicted in Figure 5
for non-stationary noise and in Figure 6 for stationary noise,

TABLE I
PRELIMINARY PESQ SCORES OF STATIONARY NOISE FOR DIFFERENT
MODEL TOPOLOGIES OF THE SOFT GATING FILTER (SGF), USING THE

LOSS COMBINATION PSY+SLOW+MSLE. THE LAYER COUNT OF THE
LSTM AND ITS BIDIRECTIONALITY ARE GIVEN IN PARENTHESES.

Model topology Signal-to-noise ratio [dB]
0 5 10 15

SGF(l=3, b=0) 1.55 1.83 2.19 2.59
SGF(l=3, b=1) 1.60 1.89 2.20 2.53
SGF(l=4, b=0) 1.55 1.81 2.15 2.50
SGF(l=4, b=1) 1.63 1.94 2.28 2.68

Fig. 4. The boxplot shows the STOI values after speech enhancement for
different loss combinations on both stationary and non-stationary noises. Each
box is based on 100 files. The p-value of the hypothesis test is indicated by
the number of stars, with the attribution ? ? ?? : p ≤ 0.0001 and no line
indicating not significant.

respectively. From the figures, we can conclude that our MSE
baseline outperforms IMCRA regardless of noise type and
SNR. Also, there is no relevant difference between MSE
and MSLE. Therefore, further comparisons will be made in
relation to the MSLE loss.

For the non-stationary noise, we find no significant dif-
ference between the MSE, MSLE, and MSLE+SLOW. Nev-
ertheless, adding a slowness loss term to MSLE+PSY does
yield small improvements that are significant when com-
pared to the MSLE. Furthermore, we recognize a significant
improvement if our psychoacoustic loss PSY is used for
the training. Both cases MLSE→MLSE+PSY, as well as
MLSE+SLOW→MLSE+SLOW+PSY gained from the addi-
tional loss term. Further, the additive combination of all three
losses—MSLE+PSY+SLOW—yields the highest mean values
in all SNR groups, which is significantly better in comparison
to the MSLE and the MSE loss, respectively. The behavior un-
der stationary noise is only slightly different when comparing
the efficacy of the suggested optimization criteria to that of the
baseline loss functions. The overall PESQ values are higher,
hence indicating a somewhat easier problem. Additionally, in
the case of stationary noise, we find stronger improvements



Fig. 5. PESQ values after speech enhancement for different loss combinations
on non-stationary noises. Each box is based on 100 files. The p-value of the
hypothesis test is indicated by the number of stars above the line, with the
attribution ? ? ?? : p ≤ 0.0001, ? ? ? : 0.0001 < p ≤ 0.001, ?? : 0.001 <
p ≤ 0.01 and no line indicating not significant.

in significance for MLSE+PSY→MSLE+PSY+SLOW, indi-
cating that our slowness loss function has a more significant
benefit for this noise type.

From both PESQ evaluations, we conclude that the ap-
plication of only the slowness loss is not beneficial, but
together with the psychoacoustic loss, we see a significant
improvement. Both losses consider different aspects of the op-
timization. The psychoacoustic hearing thresholds emphasize
on changes, which are exceeding a certain level. Therefore,
this loss can not be applied without MSLE because the
optimization would stop too early. Because of its regulatory
nature, the same holds true for the slowness loss, and as we
see from the results, the slowness term is better suited to
filter stationary noises. However, it can improve the PESQ
values in both noise conditions, when used together with the
psychoacoustic loss.

V. CONCLUSIONS

In this work, novel loss functions for speech enhancement
based on slow feature analysis and psychoacoustic insights
into the human perception of speech have been presented. The
proposed slowness-based loss exploits phoneme boundaries

Fig. 6. PESQ values after speech enhancement for all considered loss
combinations on stationary noises. Each box is calculated from 100 utterances.
The p-value of the hypothesis test is indicated by the number of stars, with
the attribution ? ? ?? : p ≤ 0.0001, ?? : 0.001 < p ≤ 0.01 and no line
indicating not significant.

during the training process to account for variations in speech
production. Additionally, the incorporation of hearing thresh-
olds in the psychoacoustic loss function allows us to model
masking effects occurring in human perception of speech to
further refine the perceptual quality of enhanced speech.

An evaluation corpus based on the Mozilla Common Voice
database was used to evaluate the proposed loss functions. The
underlying speech enhancement network utilizes a standard
neural time-frequency masking. The evaluation was conducted
by comparing STOI and PESQ scores obtained for the pro-
posed psychoacoustic and slowness-based loss functions with
those for more classical losses based on the mean squared
error, and comparing all of these learning-based approaches
to the well-known IMCRA speech enhancement framework.
The results indicate a small but consistent and statistically
significant improvement in the achieved PESQ scores of the
combined psychoacoustic and slowness-based loss function
over the classical MSE and MSLE losses. Additionally, all
DNN-based models significantly outperformed the IMCRA
baseline under all noise conditions.

Future investigations should focus on extending the pro-
posed framework to include an estimated signal phase into the



enhancement process. Additionally, a complex-valued variant
of the system that directly utilizes the complex spectrum
provides a promising direction for further research.

REFERENCES

[1] S. Boll, “Suppression of acoustic noise in speech using spectral subtrac-
tion,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 27, no. 2, p. 113–120, April 1979.

[2] Mozilla, “Common Voice,” https://voice.mozilla.org/en, Sep. 2019.
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tives in Neural Computing, L. Niklasson, M. Bodén, and T. Ziemke,
Eds. London: Springer, Sep. 1998, p. 555–560. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-1-4471-1599-1 83
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