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ABSTRACT
Automatic speech recognition (ASR) systems can be fooled via
targeted adversarial examples, which induce the ASR to produce
arbitrary transcriptions in response to altered audio signals. How-
ever, state-of-the-art adversarial examples typically have to be fed
into the ASR system directly, and are not successful when played in
a room. Previously published over-the-air adversarial examples fall
into one of three categories: they are either handcrafted examples,
they are so conspicuous that human listeners can easily recognize
the target transcription once they are alerted to its content, or they
require precise information about the room where the attack takes
place, and are hence not transferable to other rooms.

In this paper, we demonstrate the first algorithm that produces
generic adversarial examples against hybrid ASR systems, which
remain robust in an over-the-air attack that is not adapted to the
specific environment. Hence, no prior knowledge of the room char-
acteristics is required. Instead, we use room impulse responses (RIRs)
to compute robust adversarial examples for arbitrary room char-
acteristics and employ the ASR system Kaldi to demonstrate the
attack. Further, our algorithm can utilize psychoacoustic meth-
ods to hide changes of the original audio signal below the human
thresholds of hearing. In practical experiments, we show that the
adversarial examples work for varying room setups, and that no
direct line-of-sight between speaker and microphone is necessary.
As a result, an attacker can create inconspicuous adversarial exam-
ples for any target transcription and apply these to arbitrary room
setups without any prior knowledge.
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Figure 1: For an over-the-air attack against automatic speech
recognition (ASR) systems, the attack should remain viable
after the transmission over the air. This transmission can be
modeled as a convolution of the original audio signal x with
the room impulse response (RIR) h.

1 INTRODUCTION
In restless dreams I walked alone. Narrow streets of
cobblestone. ’Neath the halo of a streetlamp. I turned my collar
to the cold and damp. When my eyes were stabbed by the flash
of a neon light. That split the night. And touched the sound of
silence.

Simon & Garfunkel, The Sound of Silence

Substantial improvements in speech recognition accuracy have
been achieved in recent years by using acoustic models based on
deep neural networks (DNNs). Nevertheless, current studies suggest
that there can be significant differences in the mechanism of artifi-
cial neural network algorithms compared to human expectations.
This is a very unfortunate situation, as a rogue party can abuse this
knowledge to create input data, which leads to inconsistent recog-
nition results, without being noticed [8, 9]. As just one example
of such attacks, several recent works have demonstrated that it is
possible to fool different kinds of ASR systems into outputting a ma-
licious transcription chosen by the attacker [1, 7, 9, 27, 29, 32, 37, 39].

The practical implications and real-world impact of the demon-
strated attacks are unclear at the moment. On the one hand, earlier
work fed the adversarial audio examples directly into the ASR sys-
tem [9, 29, 39], hence ignoring all side effects (e. g., echo or reverber-
ation) of a real-world environment, where the sound is transmitted
from a loudspeaker to the input microphone of the recognition
engine. On the other hand, some works demonstrated adversarial
examples that can be played over-the-air [1, 7, 32, 37], but these
proof-of-concept attacks are either tailored to a single, static room
setup or are hard to reproduce systematically with a proven success
rate in a different environment like the attack sketched in Comman-
derSong [39]. Recently and independently, Chen et al. [10] showed
a first over-the-air attack. Their attack was evaluated against Deep-
Speech [16]. In contrast, we are showing an attack against Kaldi, a
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hybrid ASR system, based on a combination of a DNN-based acous-
tic model and a subsequent search for the optimal word sequence
in a weighted-finite-state-transducer model. This approach is con-
ceptually completely different from the end-to-end approach in
DeepSpeech, as used by Chen et al. Hybrid systems such as Kaldi are
significant here as they show the best performance on many speech
recognition tasks, require comparatively little training material,
allow for an easy replacement of task-specific grammars, and are
therefore widely adopted in the industry.

In cases where over-the-air adversarial examples have been used
in black-box settings, the target transcription is easily perceived by
human listeners, once the intended attack is known [1, 7]. We argue
that adversarial examples for ASR systems can only be considered
a real threat if the targeted recognition is produced even when the
signal is played over the air. Compared to previous attacks, where
the manipulated speech signal is fed directly into the ASR system,
over-the-air attacks are more challenging, as the transmission over
the air significantly alters the signal.

Our key insight that forms the basis of this paper is that this
transmission can be modeled as a convolution of the original audio
signal with the room impulse response (RIR), which describes the
alterations of an acoustic signal by the transmission via loudspeaker
to the microphone (see Figure 1 for an illustration), where the RIR
depends on various factors [2]. In practice, it is nearly impossible
to estimate an exact RIR without having access to the actual room.
Therefore, robust adversarial examples need to take a range of pos-
sible RIRs into account to increase the success rate. Nevertheless,
we show that for a successful attack, it is not necessary to acquire
precise knowledge about the attack setup; instead, a generic ad-
versarial example computed for a large variety of possible rooms
is enough.

Robust Adversarial Examples. The first adversarial audio ex-
amples imperceptible to humans, even if they know the target tran-
scription, have been described by Carlini and Wagner [9]. Other ap-
proaches [27, 29] have been successful at embedding most changes
below the human threshold of hearing, which makes them much
harder to notice. On the downside, none of these attacks were suc-
cessfully demonstrated when played over the air as the adversarial
examples need to be fed directly into the ASR system.

Approaches, which did work over the air, have only been tested
in a static setup (i. e., fixed position of speaker and microphone with
a fixed distance). Yakura’s and Sakuma’s [37] approach can hide
the target transcription but requires physical access to the room
to playback the audio while optimizing the adversarial example,
which limits their attack to one very specific room setup and is
very time costly. Szurley and Kolter [32] published room-dependent
robust adversarial examples, which even worked under constraints
given by a psychoacoustic model, describing the human perception
of sound. However, their adversarial examples have only been eval-
uated in an anechoic chamber (i. e., a room specifically designed
to absorb reflections). The attack can, therefore, not be used in
real-world scenarios, but only in carefully constructed laboratories
with properties that are never given in natural environments. In
other successful over-the-air attacks, human listeners can easily
recognize the target transcription once they are alerted to its con-
tent [1, 7]. Chen et al. [10] showed a first over-the-air attack against

the end-to-end recognition system DeepSpeech [16], relying on a
database of measured room transfer functions.

In contrast, our approach is inspired by Athalye et al.’s semi-
nal work: A real-world 3D-printed turtle, which is recognized as
a rifle from almost every point of view due to an adversarial per-
turbation [4]. The algorithm for creating this 3D object not only
minimizes the distortion for one image, but for all possible pro-
jections of a 3D object into a 2D image. We borrow the idea and
transfer it to the audio domain, replacing the projections by convo-
lutions with RIRs, thereby hardening the audio adversarial example
against the transmission through varying rooms.

Contributions. With Imperio, we introduce the first method
to compute generic and robust over-the-air adversarial examples
against hybrid ASR systems. We achieve this by utilizing an RIR
generator to sample from different room setups. We implement a
full, end-to-end attack that works in both cases, with and without
psychoacoustic hiding. In either case, we can produce successful
robust adversarial examples. With our generic approach, it is possi-
ble to induce an arbitrary target transcription in any kind of audio
without physical access to the target room.

More specifically, for the simulation, the convolution with the
sampled RIR is added as an additional layer to the ASR’s underlying
neural network, which enables us to update the original audio
signal directly under the constraints given by the simulated RIR.
For this purpose, the RIRs are drawn out of a distribution of room
setups to simulate the over-the-air attack. Using this approach,
adversarial examples are hardened to remain robust in real over-
the-air attacks across various room setups.We also show a reduction
of the added perturbations based on psychoacoustic hiding [41], by
including hearing thresholds in the backpropagation, as proposed
by Schönherr et al. [29].

We have implemented the proposed algorithm to attack the
hybrid DNN-HMM ASR system Kaldi [26] under varying room
conditions. We demonstrate that generic adversarial examples can
be computed that are transferable to different rooms and work
without line-of-sight, distances in the range of meters, and even if
the microphone records no direct sound but only a reflection. In
fact, we even show that our generic approach, using only simulated
RIRs, creates more robust adversarial examples compared to real
measured examples indicating that no prior knowledge about the
attack setup is required for our attack.

In summary, we make the following three key contributions:

• Robust Over-The-Air Attack. We propose a generic ap-
proach to generate robust over-the-air adversarial examples
for DNN-HMM-based ASR systems. The attack uses a DNN
convolution layer to simulate the effect of arbitrary RIRs,
which allows us to alter the raw audio signal directly.
• Psychoacoustics.We show that the attack can be combined
with psychoacoustic methods for reducing the perceived
distortions.
• Performance Analysis.We evaluate the success rate of the
adversarial attack and analyze the amount of added perturba-
tion.We investigate the influence of increasing reverberation
time, increasing microphone-to-speaker distances, different
rooms, and no direct line-of-sight between speaker and mi-
crophone.



Imperio: Robust Over-the-Air Adversarial Examples for Automatic Speech Recognition Systems ACSAC 2020, December 7–11, 2020, Austin, USA

Feature

Extraction
DNN Decoder

raw audio features
pseudo-
posteriors

transcription

I SOLEMNLY SWEAR

THAT I AM UP TO

NO GOOD

Figure 2: Overview of a state-of-the-art hybrid ASR system with the three main components of the ASR system: feature ex-
traction, calculating pseudo-posteriors with a DNN, and decoding.

A demonstration of our Imperio attack is available online at
http://imperio.adversarial-attacks.net, where we present several
adversarial audio files which have been successfully tested when
played over-the-air.

2 BACKGROUND
In the following, we provide an overview of the ASR system that
we used in the attack and describe the general approach to calculate
audio adversarial examples. Furthermore, we discuss how room
simulations can be performed with the help of RIRs and briefly
introduce the necessary background from psychoacoustics as these
are used to hide the attack.

2.1 Automatic Speech Recognition
For the demonstration of an end-to-end attack, we chose the open-
source speech recognition toolkit Kaldi [26], which has been used
in previous attacks [29, 39] and is also used in commercial tools
like Amazon’s Alexa [29]. In Figure 2, a high-level overview of
this system is given. The DNN-HMM-based ASR system can be
divided into three parts: the feature extraction, which transforms
the raw input data into representative features, the DNN as the
acoustic model of the system, and the decoding step, which returns
the recognized transcription.

Feature Extraction. For the feature extraction, the raw audio
is divided into frames (e. g., 20ms long) with a certain overlap
(e. g., 10ms) between two neighboured frames. For each of these
frames, a discrete Fourier transform (DFT) is performed to retrieve
a frequency representation of the audio input. Next, the magnitude
and the logarithm of the resulting complex signal are calculated. The
result is a common representation of audio features in the frequency
domain. In Schönherr et al.’s approach, this feature extraction is
integrated into the DNN, allowing them to directly modify the raw
audio data when computing adversarial examples (see Figure 3 for
an illustration).

Acoustic Model DNN. The features described above are used as
the input for the acoustic model DNN. Based on these, the DNN
calculates a matrix of so-called pseudo-posteriors, which describe
the probabilities for each of the phones of the language—English,
in this case—being present in each time step t = 1 . . .T .

Decoding. Finally, the pseudo-posteriors are used to calculate the
most likely transcription via Viterbi decoding and an HMM-based
language model.

This so-called hybrid approach, which realizes speech recogni-
tion through a search for the most likely path through a matrix of

phone posteriors, is easier to train and still achieves better results
in comparison to end-to-end approaches [22].

2.2 Adversarial Audio Examples
For the calculation of adversarial examples, the ASR system can be
described as the function

y = argmax
ỹ

P(ỹ |x) = f (x), (1)

mapping an audio signal x to its corresponding, most likely tran-
scription y. An adversarial example is generated by modifying the
original input

x ′ = x + δ , such that f (x) , f (x ′). (2)

The added distortions δ can also be restricted, e. g., via hearing
thresholds. In this work, only targeted attacks are considered, where
the target transcription y′ !

= f (x ′) is defined by the attacker. The
optimization can, therefore, be described as

x ′ = argmax
x̃

P(y′ |x̃). (3)

To calculate robust over-the-air adversarial examples, we base
our work on the approach proposed by Schönherr et al. [29] and
similar works. The method can be divided into three steps: forced
alignment, gradient descent, and restriction of the perturbations
via hearing thresholds.

Forced Alignment. Forced alignment is typically used during the
training of the ASR systems when no exact alignments between the
audio and the transcription data are available. In our case, we utilize
this algorithm to find the best possible alignment of the original
audio input and the malicious target transcription.

Gradient Descent. For the attack, the feature extraction is inte-
grated into the DNN, so that the raw audio data can be updated
directly via gradient descent. For this purpose, the cross-entropy
loss is measured between the target output—the pseudo-posteriors—
and the actual DNN output, and is used to compute gradients for
the optimization algorithm.

Psychoacoustic Hearing Thresholds. The added noise is restricted
to those time-frequency ranges, where noise perceptibility is mini-
mal. For this, we use psychoacoustic hearing thresholds described
by Zwicker and Fastl [41].

2.3 Room Impulse Response
When an audio signal is transmitted through a room, as visualized
in Figures 1 and 4, the recorded signal can be approximated by

http://imperio.adversarial-attacks.net
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Figure 3: AugmentedDNN,which gets the raw audio as input
and integrates the feature extraction into the recognizer’s
DNN. This enables us to update the raw audio signal directly
via gradient descent.

convolving the room’s impulse response h with the original audio
signal x as

xh = x ∗ h. (4)
Here, the convolution operator ∗ is a shorthand notation for the
multi-path transmission model

xh (n) =
n∑

m=n−M+1
x(m) · h(n −m)

with n = 0, . . . ,N − 1,
(5)

where N is the length of the audio signal,M the length of the RIR h,
and all x(n) with n < 0 are assumed to be zero.

In general, the RIR h depends on the size of the room, the posi-
tions of the source and the receiver, and other room characteristics
such as the sound reflection properties of the walls, any furniture,
people, or other contents of the room. Hence, the audio signal re-
ceived by the ASR system is never identical to the original audio,
and an exact RIR is practically impossible to predict. We describe a
possible solution for a sufficient approximation in Section 3.

2.4 Psychoacoustics
Psychoacoustics yields an effectivemeasure of (in-)audibility, which
is also helpful for the calculation of inconspicuous audio adversar-
ial examples [27, 29]. Psychoacoustic hearing thresholds describe
how the dependencies between frequencies and across time lead
to masking effects in human perception [41]. Probably the best-
known example for an application of these effects is found in MP3
compression [18], where the compression algorithm uses empirical
hearing thresholds to minimize bandwidth or storage requirements.
For this purpose, the original input signal is transformed into a
smaller but lossy representation.

For an attack, the psychoacoustic hearing thresholds are used
to limit the changes in the audio signal to time-frequency-ranges,
where the added perturbations are not, or barely, perceptible by
humans. To calculate the hearing thresholds, we use the approach
described by Schönherr et al. [29].

3 OVER-THE-AIR ADVERSARIAL EXAMPLES
Our goal is to compute robust audio adversarial examples, which
still work after transmission from a loudspeaker. For this, we simu-
late different RIRs and employ an iterative algorithm to compute

bz rz

sz

bx

rx

sx

b
y

ry

sy

T60

Figure 4: For the room simulation model, we assume a prob-
ability distribution over all possible rooms by defining rele-
vant simulation parameters like the room geometry, the re-
verberation timeT60, and positions of source and receiver as
random variables. To optimize our over-the-air adversarial
examples, we sample from this distribution to get a variety
of possible RIRs.

adversarial examples robust against signal modifications that are
incurred during playback in a room.

3.1 Threat Model
Throughout the rest of this paper, we consider the following threat
model similar to prior work in this area. We assume a white-box
attack, where the adversary knows the internals of the ASR system,
including all its model parameters. This requirement is in line with
prior work on this topic [9, 29, 39]. Using this knowledge, the
attacker generates malicious audio samples offline before the actual
attack takes place, i. e., the attacker exploits the ASR system to create
an audio file that produces the desired recognition result, which
is then played via a loudspeaker. Additionally, we assume that the
trained ASR system, including the DNN, remains unchanged over
time. Finally, we assume that the adversarial examples are played
over the air. Note that we only consider targeted attacks, where
the target transcription is predefined (i.e., the adversary chooses
the target transcription). Finally, we assume a threat model where
a potential attacker can run an extensive search. Specifically, the
attacker is able to calculate a batch of potential adversarial examples
and select those examples that are especially robust.

3.2 Room Impulse Response Simulator
To simulate RIRs, we use the AudioLabs implementation based on
the image method from Allen and Berkley [2]. The simulator takes
as input the room dimensions, the reverberation time T60, and the
position of source and receiver and approximates the corresponding
RIR for the given parameters.

For our attack, we model cuboid-shaped rooms, which can be
described by their length bx , width by , height bz defined as b =
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Figure 5: Simulated RIR for b = [8m, 7m, 2.8m], s =
[3.9m, 3.4m, 1.2m] and r = [1.4m, 1.8m, 1.2m], and T60 = 0.4
in the time domain (top) and the frequency domain (bot-
tom).

[bx ,by ,bz ]. In addition to this, we model the three-dimensional
source position s = [sx , sy , sz ], receiver position r = [rx , ry , rz ],
and the reverberation time T60, which is a standard measure for
the audio decay time, defined as the time it takes for the sound
pressure level to reduce by 60 dB. This results in ten freely selectable
parameters. All parameters are also sketched in Figure 4. Even
though this might seem like an overly simple model, we show that
the computed adversarial examples are indeed robust for real rooms
that are more complex.

In order to sample random RIRs, we interpret these ten parame-
ters to be random variables. We draw each value from a uniform
distribution between a minimum and a maximum allowed value.
For the room size and for T60, the minimum and the maximum
values can be chosen arbitrarily and are thus selected first. After
those parameters are drawn, the ranges for source and receiver
positions are drawn to guarantee that the source and the receiver
are located inside the room.

To simplify the notation, we use the 10-dimensional parameter
vector θ in the following to describe all of these parameters. The
RIR h can be considered as a sample of the distribution Hθ . An
example of a simulated RIR in the time and the frequency domain
is shown in Figure 5.

3.3 Robust Audio Adversarial Examples
Unlike earlier approaches that feed adversarial examples directly
into the ASR system [9, 29], we explicitly include characteristics of
the room, in the form of RIRs, in the optimization problem. This
hardens the adversarial examples to remain functional in an over-
the-air attack.

For the attack, we therefore extend the optimization criterion
given in (3) by

x ′ = argmax
x̃

Eh∼Hθ [P(y
′ |x̃h )]. (6)

This approach is derived from the Expectation Over Transforma-
tion (EOT) approach in the visual domain, where it is used to con-
sider different two- and three-dimensional transformations, which
leads to robust real-world adversarial examples [4]. In our case, in-
stead of visual transformations, we use the convolution with RIRs,

Convolution
Feature

Extraction
DNN

raw audio
pseudo-
posteriors

x(n)

. . .

x(n−M+2)

x(n−M+1)

χ = fP (xh) P (y|x) = f(χ)xh = x ∗ h

h

Figure 6: To simulate anyRIR and to update the time domain
audio signal directly, the RIR is integrated as an additional
layer into the DNN.

drawn from Hθ , to maximize the expectation over varying RIRs, as
shown in Equation (6).

For the implementation, we use a DNN that already has been aug-
mented to include the feature extraction and prepend an additional
layer to the DNN. This layer simulates the convolution from the
input audio file with the RIR h to model the transmission through
the room. Integrating this convolution as an additional layer allows
us to apply gradient descent directly to the raw audio signal. A
schematic overview of the proposed DNN is given in Figure 6. The
first part (“Convolution”) describes the convolution with the RIR h.
Note that the RIR simulation layer is only used for the calculation
of adversarial examples and removed during testing, as the actual
RIR will then act during the transmission over the air. The center
and right part (“Feature extraction” and “DNN”) show the feature
extraction and the acoustic model DNN, which is used to obtain
the pseudo-posteriors for the decoding stage.

The inclusion of the convolution as a layer in the DNN requires
it to be differentiable. Using (5), the derivative can be written as

∂xh (n)
∂x(m) = h(n −m) ∀n,m. (7)

This can be integrated for the calculation of the gradient ∇x as

∇x = ∂L(y,y
′)

∂ f (χ ) ·
∂ f (χ )
∂ fp (xh )

·
∂ fp (xh )
∂xh

· ∂xh
∂x
, (8)

where the function fp (·) describes the feature extraction. This is an
extension of the approach in [29], where

∇x = ∂L(y,y
′)

∂ f (χ ) ·
∂ f (χ )
∂ fp (x)

·
∂ fp (x)
∂x

(9)

is defined for the calculation of adversarial examples via gradient
descent using the objective function L(·).

3.4 Over-the-Air Adversarial Examples
To assess the robustness of the hardened over-the-air adversarial
attack, the adversarial examples x ′ have to be played back via a
loudspeaker, and the recorded audio signals are used to determine
the accuracy. For the calculation, we implemented the optimization
as defined in (6), by sampling a new RIR h after every set of Q
gradient descent iterations. This simulates different rooms and
recording conditions. Therefore, the generated adversarial example
depends on the distribution Hθ , from which the RIR h is drawn.
After each gradient descent step, the audio signal x ′ is updated via
the calculated gradient ∇x at the learning rate α .
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Algorithm 1 Calculation of robust adversarial examples.

1: input: original audio x , target transcription y′, hearing thresh-
olds Φ, distribution Hθ

2: result: robust adversarial example x ′
3: initialize: д← 0, x ′ ← x
4: while д < G and y , y′ do
5: д← д + 1
6: draw random sample h ∼ Hθ
7: update first layer of DNN with h
8: for 1 to Q do
9: // gradient descent, optionally constrained by
10: // hearing thresholds Φ
11: ∇x ← ∂L(y,y′)

∂x
12: x ′ ← x ′ + α · ∇x
13: x ′h ← x ′ ∗ htest
14: y ← decode(x ′h ) with DNN0

The total maximum number of iterations is limited to at most G
iterations. However, if a successful robust adversarial example is
created before the maximum number of iterations is reached, the
algorithm does not need to continue. To efficiently calculate adver-
sarial examples, we use an RIR htest to simulate the over-the-air
scenario during the calculation to verify whether the example has
already achieved over-the-air robustness. This RIR is only used for
verification and can, for example, be drawn out of Hθ once at the
beginning of the algorithm.

The entire approach is summarized with Algorithm 1. As can be
seen, the psychoacoustic hearing thresholds Φ are optionally used
during the gradient descent to limit modifications of the signal to
those time-frequency ranges, where they are (mostly) imperceptible.
Here, DNN0 describes the augmented DNN (“Feature extraction”
and “DNN”) in Figure 3 without the RIR simulation since, for the
algorithm, this is replaced by the simulated RIR htest.

4 EXPERIMENTAL EVALUATION
In the following, we evaluate the performance of the proposed al-
gorithm for adversarial examples played over-the-air and compare
the performance for varying reverberation times, distances, and ad-
versarial examples restricted by psychoacoustic hearing thresholds.
Additionally, we compare the generic approach with an adapted
version of the attack where an attacker has prior knowledge of the
target room. Finally, we measure the changes of generic adversarial
examples replayed in different rooms and, even if there is no direct
line-of-sight between the microphone and the speaker.

For a practical demonstration of the attack, exemplary adver-
sarial examples are available online at http://imperio.adversarial-
attacks.net.

4.1 Metrics
We use the following standard measures to assess the quality of the
computed adversarial examples.

4.1.1 Word Error Rate. To measure performance, we use the word
error rate (WER) with respect to the target transcription. For its
computation, the standard metric for this purpose, the Levenshtein

distance [23] L, is used, summing up the number of deleted D,
inserted I , and substituted S words for the best possible alignment
between target text and recognition output. The Levenshtein dis-
tance is finally divided by the total number of words N to obtain

WER = 100 · L
N
= 100 · D + I + S

N
. (10)

For a real attack, an adversarial example can only be considered
successful if a WER of 0% is achieved (i.e., the hypothesis of the
system matches with the attacker chosen target transcription).

4.1.2 Segmental Signal-to-Noise Ratio. The segmental signal-to-
noise ratio (SNRseg) measures the amount of noise σ added from
an attacker to the original signal x and is computed as

SNRseg(dB) =
10
K

K−1∑
k=0

log10

∑Tk+T−1
t=Tk x2(t)∑Tk+T−1
t=Tk σ 2(t)

, (11)

whereT is the segment length andK the number of segments. Thus,
the higher the SNRseg, the less noise was added.

In contrast to the signal-to-noise ratio (SNR), the SNRseg [35]
is computed frame-wise and gives a better assessment of an audio
signal if the original and the added noise are aligned [38] as it is
the case in our experiments.

4.2 Calculation Time
All experiments were performed on a machine with an Intel Xeon
Gold 6130 CPU and 128 GB of DDR4 memory.

For our experiments, we limit the maximum number of iterations
to 2000 since in every iteration more distortions are added to the
audio file, which decreases the audio quality of the adversarial
examples. Also, this number is sufficient for the attack to converge,
as can be seen in Figure 8, where the WER is plotted as a function
of the maximum numbers of iterations G.

Computing an adversarial example for 10 seconds of audio with
the maximum number of G = 2000 iterations and M = 512 takes
about 80 minutes. Note that the computation for a single audio file
is limited by the single-core performance of the machine, and the
attack is fully parallelizable for multiple audio files.

4.3 Over-the-Air Attacks
We evaluate the attack for the lab setup as shown in Figure 7. The
approximate dimensions of this room are breal ≈ [8m, 7m, 2.8m]
and the positions of the loudspeaker and the microphone are sreal =
[3.9m, 3.4m, 1.2m] and rreal = [1.4m, 1.8m, 1.2m], respectively.

We compute all adversarial examples with Algorithm 1. Based
on preliminary experiments, we set G = 2000 and Q = 10. For
the distributions Hθ , we used two different versions, shown in
Table 1. Hθgen describes a generic room, while Hθadp is used as
an approximation to reassemble the real room from Figure 7. If
not specified otherwise, htest, which is used for testing during the
attack, is drawn once at the beginning of the algorithm from the
same distribution Hθ .

The WER is measured for the recorded adversarial examples
after playing them via loudspeaker. The SNRseg is calculated after
applying a measured RIR hreal to both the original signal and the
adversarial example. We chose this approach since it corresponds

http://imperio.adversarial-attacks.net
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Figure 7: 360 degree panorama shot of the lab setup used for the over-the-air recordings. The green dashed circle shows the
microphone position and the red solid circle shows the position of the loudspeaker.

Figure 8: WERs for simulated over-the-air attacks as a func-
tion of the maximum number of iterations G.

to the actual signal perceived by human listeners if the adversarial
examples are played over the air.

For all cases, we calculated 20 adversarial examples. In some
cases, the audio samples clipped too much (exceeded the maximum
defined value of the audio, after the addition of the adversarial
distortion). As it would not be possible to replay those examples,
we removed them from the evaluation of the real over-the-air attack.
Each of the remaining adversarial examples were played five times,
and we reported the number of adversarial examples that could be
transcribed with 0 % WER.

4.3.1 Generic Over-the-Air Attack. First, we evaluate the attack
under the assumption that the attacker has no prior knowledge
about the attack setup. Specifically, we use Hθgen and calculate ad-
versarial examples for different reverberation timesT60 and varying
lengthM of RIRs.M describes how many past sampling values are
considered, and the larger the reverberation time, the more impor-
tant are the past sampling values. We assume that, especially in
setups with high reverberation times T60, a largerM will result in
more robust adversarial examples, as it is a better match to the
real-world conditions.

For the experiments, we used the variable-acoustics lab in Fig-
ure 7 to adjust the reverberation time and tested three versions of
the RIR lengthM = 512,M = 1024, andM = 8192 for speech data.
The results in Table 2 confirm the above assumption: forM = 8192,
we can obtain the best WERs, especially for the longer reverber-
ation times. Note that even if the WER seems to be high, for an
attacker, it is sufficient to play one successful adversarial example
with 0%WER, which is also in line with the definition in Section 3.1
and, in fact possible. The SNRseg decreases with increasing values

Table 1: Range of room dimensions for sampling the differ-
ent distributions. Hθgen describes a generic room, which is
used for the generic version of the attack, where we assume
the attacker to have no prior knowledge. In case ofHθadp , the
distributions are adapted to the lab setup in Figure 7.

bx by bz T60
min max min max min max min max

Hθgen 2.0m 15.0m 2.0m 15.0m 2.0m 5.0m 0.0 s 1.0 s
Hθadp 6.0m 10.0m 5.0m 9.0m 3.0m 5.0m 0.2 s 0.6 s

Table 2: WER, number of successful adversarial examples,
and SNRseg for generic over-the-air attacks usingHθgen with
speech data for differentM and varying T60.

M = 512 M = 1024 M = 8192
WER AEs WER AEs WER AEs

T60 = 0.42 s 42.2 % 5/20 34.9 % 5/20 33.3 % 2/20
T60 = 0.51 s 68.9 % 1/20 56.4 % 2/20 42.0 % 2/20
T60 = 0.65 s 91.6 % 0/20 88.0 % 0/20 68.7 % 2/20

SNRseg 7.6±6.7 dB 7.7±6.7 dB 3.2±6.1 dB

forM , which indicates that more noise needs to be added to these
adversarial examples. However, the calculation time of the adver-
sarial examples increases by the factor of four from M = 512 to
M = 8192.

4.3.2 Hearing Thresholds. Tomeasure the impact of hearing thresh-
olds, we conducted the same experiments as for Table 2 with
T60 = 0.42 and hearing thresholds. The results are shown in Table 3.
Compared to the version without hearing thresholds, the WER and
the total number of successful adversarial examples decrease. Nev-
ertheless, it was possible to find successful adversarial examples
forM = 8192. At the same time, the SNRseg has improved values.
Additionally, the SNRseg measures any added noise, not only the
perceptible noise components. Therefore, the perceptible noise is
even lower than the SNRseg would suggest for the versions where
hearing thresholds are used.

4.3.3 Distance between Speaker and Microphone. In Figure 9, we
measured the effect of an increasing distance between the micro-
phone and loudspeaker. We used the shortest reverberation time
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Table 3: WER, number of successful adversarial examples,
and SNRseg for generic over-the-air attacks using Hθgen and
hearing thresholds with speech data for differentM .

M = 512 M = 1024 M = 8192
WER AEs WER AEs WER AEs

T60 = 0.42 s 70.0 % 0/20 62.7 % 0/20 69.6 % 2/20

SNRseg 11.5±5.2 dB 10.4±6.9 dB 5.5±4.8 dB

Figure 9: WERs for over-the-air attacks plotted over the dis-
tance between microphone and speaker for M = 8192 with
and without hearing thresholds.

T60 = 0.42 s and varied the distance from 1m to 6m forM = 8192
with and without hearing thresholds.

In general, we find that the WER increases with increasing dis-
tance. Nevertheless, starting from a distance of approximately 2m,
the WER does not increase as rapidly as for smaller distances if we
use hearing thresholds. In cases where no hearing thresholds are
used, the WER even decreases for larger distances.

4.3.4 Varying Audio Content. In Table 4, we evaluated the effect
of varying audio contents of the original audio samples. For this,
we used speech, music, and bird chirping data. Using speech audio
samples for the attack results in the best WERs.

The average SNRseg indicates that most distortions have to be
added to the original audio samples for bird chirping while we
achieve better results for music and speech data.

4.3.5 Adaptive Attack. In the following, we compare the generic
attack, where the attacker has no prior knowledge about the attack
setup, with an adapted version of the attack. Note that the generic
attack is the more powerful attack compared to the adapted version,
as it requires no access nor any information about the room where
the attack is conducted.

For the evaluation, we usedHθadp andHθgen in Table 1, combined
with a measured RIR hreal and a simulated RIR hgen for htest in
Algorithm 1.hgen was drawn once at the beginning of the algorithm
from the same distribution, described via Hθgen . hreal is a measured
RIR, obtained from the recording setup that is actually used during
the attack. Consequently, the version with Hθgen and hgen does not
use any prior knowledge of the room or the recording setup, while
the version withHθadp andhreal is tailored to the room. Surprisingly,
the generic version clearly outperforms the adapted versions (Hθadp ,
hreal) in Table 5, and wewere able to find fully successful adversarial

Table 4: WER, number of successful adversarial examples,
and SNRseg for different audio content forM = 512.

Music Speech Birds

Sucessful AEs 1/20 5/20 0/20
WER 61.1 % 42.2 % 71.7 %

SNRseg 10.7±2.7 dB 7.6±6.7 dB 1.2±3.0 dB

Table 5: WER, number of successful adversarial examples,
and SNRseg for different audio content for M = 512. Com-
paring generic over-the-air attacks with adapted over-the-
air attacks.

Music Speech Birds
WER AEs WER AEs WER AEs

Hθgen , hgen 61.1 % 1/20 42.2 % 5/20 71.7 % 0/20
Hθadp , hadp 63.2 % 2/20 65.0 % 2/20 84.5 % 2/20

∆ in WER + 2.1 % + 22.8 % + 12.8 %

Table 6: WER and number of successful adversarial exam-
ples for generic over-the-air attacks with and without di-
rect line-of-sight in varying rooms based on speech data
forM = 8192.

Lecture Meeting OfficeRoom Room
WER AEs WER AEs WER AEs

w/ line-of-sight 40.0 % 2/20 55.3 % 1/20 74.0 % 1/20
w/o line-of-sight 71.3 % 0/20 62.0 % 0/20 82.7 % 1/20

∆ in WER + 31.3 % + 6.7 % + 8,7 %

examples for those cases, i. e., adversarial examples with a WER
of 0%.

As a consequence, for an attacker, it is not only unnecessary to
acquire prior knowledge about the room characteristics, but the
likelihood of success is even higher if a generic attack is chosen.

4.3.6 Varying Room Conditions. To evaluate the adversarial exam-
ples in varying rooms, we chose three rooms of differing sizes: a
lecture room with approximately 77m2, a meeting room with ap-
proximately 38m2, and an office with approximately 31m2. Layout
plans of the rooms are shown in Appendix A, including positions
of the speaker and microphone for all recording setups and the
measured reverberation time.

Direct Line-of-Sight Attack. The first attacks were conducted
with a direct line-of-sight between the microphone and the speaker.
The results are shown in Table 6. Even though the results vary
depending on the room, the WERs remain approximately in the
same range as the experiments with varying reverberation times
in Table 2 would indicate. Surprisingly, the room with the highest
reverberation time, the lecture room, actually gave the best results.

Overall, the results show that our generic adversarial examples
remain robust for different kinds of rooms and setups and that it
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is sufficient to calculate one version of an adversarial example to
cover a wide range of rooms (i.e., the attack is transferable).

No Line-of-Sight Attack. For the rooms in Table 6, we also per-
formed experiments where no line-of-sight between the micro-
phone and the speaker exists by blocking the direct over-the-air
connection with different kinds of furniture. As a consequence, not
the direct sound, but a reflected version of the audio is recorded.
An implication is that these attacks could be carried out without
being visible to people in the vicinity of the ASR input microphone.
We tested different scenarios for our setup: In the lecture and the
meeting room, the source and the receiver were separated by a table
by simply placing the speaker under the table. In the office, the
speaker was even placed outside the room. For this recording setup,
the door between the rooms was left open. For all other setups, the
doors of the respective rooms were closed. A detailed description
of the no line-of-sight setups is given in Appendix A.

In cases where no line-of-sight exists, the distortions that occur
through the transmission can be considered more complex, and
consequentially, a prediction of the recorded audio signal is hard. A
blocked line-of-sight will most likely decrease the WER, but it is in
general possible to find adversarial examples with 0% WER, even
where the source was placed outside the room. This again shows
that our generic version of the attack can successfully model a wide
range of acoustic environments simultaneously, without any prior
knowledge about the room setup.

5 RELATEDWORK
In addition to the prior work that we have already discussed, we
want to provide a broader and more detailed overview of related
work in the following.

Generally speaking, adversarial attacks on ASR systems focus
either on hiding a target transcription [1, 7] or on obfuscating the
original transcription [12]. Almost all previous works on attacks
against ASR systems did not focus on real-world attacks [7, 40] or
were only successful for simulated over-the-air attacks [27].

Carlini et al. [7] have shown that targeted attacks against HMM-
only ASR systems are possible. They use an inverse feature extrac-
tion to create adversarial audio samples. However, the resulting au-
dio samples are not intelligible by humans in most cases and may be
considered as noise, but may make thoughtful listeners suspicious
once they are alerted to its hidden voice command. An approach to
overcome this limitation was proposed by Zhang et al. [40]. They
have shown that an adversary can hide a transcription by utilizing
non-linearities of microphones to modulate the baseband audio
signals with ultrasound above 20 kHz, which they inject into the
environment. The main downside of this attack, hence, is that the
attacker needs to place an ultrasound transmitter in the vicinity
of the voice-controlled system under attack and that the attacker
needs to retrieve information from the audio signal, recorded with
the specific microphone, which is costly in practice and tailors the
attack to one specific setup. Song andMittael [31] and Roy et al. [28]
introduced similar ultrasound-based attacks that are not adversarial
examples, but rather interact with the ASR system in a frequency
range inaudible to humans. Nevertheless, for the attack hours of
audio recordings are required to adjust the attack to the setup [31]
or specially designed speakers are necessary [28].

Carlini and Wagner [9] published a general targeted attack on
ASR systems using CTC-loss. The attacker creates the optimal at-
tack via gradient-descent-based minimization [8] (similar to previ-
ous adversarial attacks on image classification), but the adversarial
examples are fed directly into the recognizer. CommanderSong [39]
is evaluated against Kaldi and uses backpropagation to find an ad-
versarial example. However, the very limited and non-systematic
over-the-air attack highly depends on the speakers and recording
devices, as the attack parameters have to be adjusted, especially for
these components. Yakura and Sakuma [37] published a technical
report, which describes an algorithm to create over-the-air robust
adversarial examples, but with the limitation that it is necessary
to have physical access to the room where the attack takes place.
Also, they did not evaluate their room-dependent results for vary-
ing room conditions and were unable to create generic adversarial
examples systematically. Concurrently, Szuley and Kolter [32] also
published a work on room-dependent robust adversarial examples,
which worked under constraints given by a psychoacoustic model.
However, their adversarial examples only work in an anechoic
chamber, a room specifically designed to eliminate the effect of an
RIR. The attack can, therefore, not be compared with a real-world
scenario, as the anechoic chamber effectively reproduces the effect
of directly feeding the attack into the ASR system, which is never
given in real room environments. Li et al. [20] published a work to
obfuscate Amazon’s Alexa wake word via specifically crafted music.
However, their approach was not successful at creating targeted
adversarial examples that work over the air.

Alzantot et al. [3] proposed a black-box attack, which does not
require knowledge about the model. For this, the authors use a
genetic algorithm to create their adversarial examples for a keyword
spotting system, which differs from general speech recognition due
to a much simpler architecture and far fewer possible recognition
outcomes. For DeepSpeech [16] and Kaldi, Khare et al. [30] proposed
a black-box attack based on evolutionary optimization, and also
Taori et al. [33] present a similar approach in their paper.

Schönherr et al. [29] published an approach where psychoacous-
tic modeling, borrowed from the MP3 compression algorithm, was
used to re-shape the perturbations of the adversarial examples in
such a way as to hide the changes to the original audio below
the human hearing thresholds. However, the adversarial examples
created in that work need to be fed into the recognizer directly.
Concurrently, Abdullah et al. [1] showed a black-box attack in
which psychoacoustics is used to calculate adversarial examples
empirically. Their approach focuses on over-the-air attacks, but in
many cases, humans can perceive the hidden message once they
are alerted to its content. Note that our adversarial examples are
conceptually completely different, as we use a target audio file,
where we embed the target transcription via backpropagation. The
changes, therefore, sound like random noise (see examples available
at http://imperio.adversarial-attacks.net). With Abdullah et al.’s
approach, an audio file with the spoken target text is taken and
changed in a way to be unintelligible for unbiased human listen-
ers, but not for humans aware of the target transcription. This is
equally the case for Chen et al.’s [11] recently published black-box
attack against several commercial devices, where humans can per-
ceive the target text. As an extension of Carlini’s and Wagner’s

http://imperio.adversarial-attacks.net
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attack [9], Qin et al. [27] introduced the first implementation of RIR-
independent adversarial examples. Unfortunately, their approach
only worked in a simulated environment and not for real over-the-
air attacks, but the authors also utilize psychoacoustics to limit
the perturbations.

In the visual domain, Evtimov et al. [14] showed one of the first
real-world adversarial attacks. They created and printed stickers,
which can be used to obfuscate traffic signs. For humans, the stick-
ers are visible. However, they seem very inconspicuous and could
possibly fool autonomous cars. Athalye et al. [4] presented another
real-world adversarial perturbation on a 3D-printed turtle, which is
recognized as a rifle from almost every point of view. The algorithm
to create this 3D object not only minimizes the distortion for one
image but for all possible projections of a 3D object into a 2D image,
hence producing a robust adversarial example.

Recently and independently, Chen et al. [10] showed a first over-
the-air attack. Their attack was evaluated against DeepSpeech [16].
Note that we focus on generic adversarial examples that work over-
the-air for different kinds of rooms. Additionally, we used Kaldi, a
hybrid DNN-HMM ASR system that works in a fundamentally dif-
ferent manner than the end-to-end approach of DeepSpeech, which
is attacked by Chen et al.

Our approach is the first targeted attack that provides room-
independent, robust adversarial examples against a hybrid ASR
system. We demonstrate how to generate adversarial examples that
are mostly unaffected by the environment, as ascertained by verify-
ing their success in a broad range of room characteristics. We utilize
the same psychoacoustics-based approach proposed by Schönherr
et al. [29] to limit the perturbations of the audio signal to remain
under, or at least close to, the human thresholds of hearing, and
we show that the examples remain robust to playback over the air.
The perturbations that remain audible in the adversarial examples
that we create, are non-structured noise, so that human listeners
cannot perceive any content related to the targeted recognition
output. Hence, our attack can be successful in a broad range of
possible rooms, without any physical access to the environment
(e. g., by playback of inconspicuous media from the Internet), and
for which the target recognition output is not at all perceptible by
human listeners. It shows the possibility and risk of a new attack
vector, as no specialized hardware is needed for the playback and
by being insensitive to the rooms in which the attacked systems
are being operated.

6 DISCUSSION
Our experiments show that the adversarial examples, which we
calculated with the proposed algorithm, remain robust even for
high reverberation times or large distances between speaker and mi-
crophone. Also, the same adversarial examples can be successfully
played over the air, even for setups where no direct line-of-sight ex-
ists.

Attack Parameters. Our comparison between the generic and
the adapted version of the attack shows that the more powerful
generic attack does not only have a similar success rate but can
even outperform an adapted version where the attacker has prior
knowledge of the target room. Consequently, an attacker only needs
to calculate one generic adversarial example to cover a wide range
of possible recording setups simultaneously.

For an attack, one successful adversarial example, which re-
mains robust after being replayed (with a WER of 0%), is already
enough. Therefore, the best strategy for an actual attack would be
to calculate a set of adversarial examples containing the malicious
transcription and to choose the most robust ones. In general, the re-
sults indicate a trade-off between the WER and the noise level: if no
hearing thresholds are used, the WER is significantly better in com-
parison to examples with hearing thresholds. Nevertheless, even
if the WER is better in cases without hearing thresholds, we have
shown that it is indeed possible to calculate over-the-air-robust
adversarial examples with hearing thresholds. Those adversarial ex-
amples contain less perceptible noise and are, therefore, less likely
to be detected by human listeners.

End-to-endASR systems. End-to-endASR systems differwide-
ly from the hybrid ASR systems used in this paper. However, the
proposed attack only requires the possibility for backpropagation
from the output to the input of the recognition network, and can
therefore be applied to end-to-end systems. A simulated version of
a similar attack with RIRs has been shown by Qin et al. [27]. An
adaptation of this attack is, therefore, most likely transferable to
end-to-end ASR systems in the real world.

Black-Box Attack. In a black-box scenario, the attacker has no
access to the ASR system. However, even for this more challenging
attack, it has been shown that it is possible to calculate adversarial
examples, with the caveat that humans can perceive the hidden
transcription if they are made aware of it [11]. The proposed ap-
proach is not easy to apply to black-box adversarial examples like
commercial ASR systems such as Amazon’s Alexa. Nevertheless, it
should be feasible to use a similar approach in combination with a
parameter-stealing attack [17, 24, 25, 34, 36]. Once the attacker can
rebuild their own system, which reassembles the black-box system,
the proposed algorithm can be used with that system as well.

Countermeasures. To effectively prevent adversarial attacks,
an ASR system needs either some kind of detection mechanism or
needs to be hardened against adversarial examples. The detection of
adversarial examples for known attacks might be feasible. However,
no guarantees can be given against novel attacks in the long term.
For this, it is necessary to build the ASR system to be adversarial-
example-robust, e. g., by mimicking the human perception of speech
similar to images encoded in JPEG format [5]. One step in this
direction can be to focus the ASR system on only those signal
components that are perceptible to the human listener and thus
carry semantic information.

Additionally, not only the input data can be utilized to detect
adversarial examples, but the ASR system’s DNN can also serve this
purpose. To achieve this, the uncertainty of the DNN estimation can
be utilized to predict the reliability of the DNN output [13, 15, 19, 21].
Due to the difficulty to creating robust adversarial example defenses,
Carlini et al. proposed a guideline for the evaluation of adversarial
robustness, which lists all important properties of a successful
countermeasure against adversarial examples [6].

7 CONCLUSION
In this paper, we have demonstrated that ASR systems are vulnera-
ble against adversarial examples played over the air, and we have
introduced an algorithm for the calculation of robust adversarial
examples. By simulating varying room setups, we can create highly
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robust adversarial examples that remain successful over the air in
many environments.

To substantiate our claims, we performed over-the-air attacks
against Kaldi; a state-of-the-art hybrid recognition framework that
is used in Amazon’s Alexa and other commercial ASR systems.
We presented the results of empirical attacks for different room
configurations. Our algorithm can be used with and without psy-
choacoustic hearing thresholds, limiting the perturbations to being
less perceptible by humans. Furthermore, we have shown that it is
possible to create targeted robust adversarial examples for varying
rooms even if no direct line-of-sight between the microphone and
the speakers exists, and even if the test room characteristics are
completely unknown during the creation of the example.

Future work should investigate possible countermeasures such as
using only the perceptible parts of the audio signal for recognition
or using internal statistical information of the hybrid recognizer
for detecting attacks.
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A ROOM LAYOUT PLANS

Table 7: Microphone and Speaker positions and the reverberation time for each room in Table 6.

T60 Microphone Speaker
w/ line-of-sight w/o line-of-sight

Lecture 0.80 s r = [8.1m, 3.4m, 1.2m] s = [11.0m, 3.4m, 1.2m] s = [8.9m, 2.2m, 0.0m]Room

Meeting 0.74 s r = [3.7m, 5.7m, 1.2m] s = [1.8m, 5.7m, 1.2m] s = [3.7m, 4.9m, 0.0m]Room

Office 0.64 s r = [3.8m, 1.8m, 1.2m] s = [1.4m, 4.6m, 1.2m] s = [−0.5m, 2.0m, 1.2m]

Figure 10: Room layout of the lecture room.
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Figure 11: Room layout of the office room.

Figure 12: Room layout of the meeting room.
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