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ABSTRACT

Acoustic speaker recognition systems are very vulnerable to
spoofing attacks via replayed or synthesized utterances. One
possible countermeasure is audio-visual speaker recognition.
Nevertheless, the addition of the visual stream alone does not
prevent spoofing attacks completely and only provides further
information to assess the authenticity of the utterance. Many
systems consider audio and video modalities independently
and can easily be spoofed by imitating only a single modal-
ity or by a bimodal replay attack with a victim’s photograph
or video.

Therefore, we propose the simultaneous verification of
the data synchronicity and the transcription in a challenge-
response setup. We use coupled hidden Markov mod-
els (CHMMs) for a text-dependent spoofing detection and
introduce new features that provide information about the
transcriptions of the utterance and the synchronicity of both
streams. We evaluate the features for various spoofing sce-
narios and show that the combination of the features leads
to a more robust recognition, also in comparison to the base-
line method. Additionally, by evaluating the data on unseen
speakers, we show the spoofing detection to be applicable in
speaker-independent use-cases.

Index Terms— spoofing detection, liveness detection,
audio-visual speaker recognition, multimodal biometrics,
coupled hidden Markov models

1. INTRODUCTION

In a spoofing attack against biometrics, a malicious party tries
to imitate another person’s biometrics. One approach to in-
crease the robustness against spoofing attacks is to use multi-
modal biometrics, e. g., audio-visual speaker verification [1].
However, if no countermeasure is implemented, multimodal
systems have shown to be vulnerable against spoofing attacks
imitating only one trait successfully, since they often focus on
the trait with the least distortions [2, 3].

In general, different kinds of spoofing attacks against
audio-visual authentication need to be considered. This en-
compasses replay attacks, where an impostor uses a previ-
ously recorded utterance of the victim, e. g., a video of the

entire identification process or a recording of the audio chan-
nel and an additional visual input, like an arbitrary image or
video of the victim.

Playing back a synthesized version of the utterance con-
stitutes another spoofing attack. Such synthesized informa-
tion has the advantage that a response to a challenge can be
imitated as well [4, 5]. However, in contrast to recordings,
synthesized videos are more difficult to access and the move-
ments of the lips often appear artificial [6].

To prevent such attacks, the task is to distinguish between
a spoofing attack and a genuine speaker such that a sophis-
ticated attack can be detected, but a genuine speaker is not
rejected.

For speaker recognition using audio data only, many dif-
ferent approaches for spoofing and liveness detection exist.
To counter replay attacks, text-dependent recognition and dif-
ferent phrases for each identification process can be used [7].
For the classification of synthesized utterances, the constant
Q transform (CQT) has been shown to achieve robust results
for an audio-only recognition [8].

Audio-visual speaker recognition [9, 10] provides much
more information to verify a response, but only a few recent
works have investigated audio-visual spoofing detection. All
of these works use synchronicity measures either for a single
utterance [11, 12] or multiple utterances [13, 14, 15]. In [11]
the difference to stored sample utterances is calculated for
the audio and the video channel separately, using dynamic
time warping (DTW). The resulting time differences of both
modalities are then compared to verify the utterance. Fur-
ther approaches use canonical correlation analysis (CCA) to
maximize the cross-correlation between matching audio and
video frames [12, 13, 15]. Similar to these works, in [14] a
co-inertia analysis (CoIA) is applied to the audio and video
data to calculate features for a correlation.

All these approaches are still vulnerable to video replay
attacks since they only measure the synchronicity. Particu-
larly the approaches in [11] and [12] may not be able to dis-
tinguish between a recorded video and a genuine utterance,
since the challenge does not change.

While hidden Markov models (HMMs) have been used
for audio-visual speaker verification [16, 17, 18], the authors
do not verify their method for spoofing attacks or again only



detect the synchronicity but do not consider the transcription.
Especially, in [16] where the authors also use CHMMs, only
an asynchrony detection is applied by considering major sig-
nal changes (e. g., starts or ends of words). Hence, a video
replay attack is impossible to detect with this approach.

In contrast to these works, we use coupled hidden Markov
models (CHMMs) to simultaneously verify the audio-visual
synchronicity and transcription in a challenge-response setup.
CHMMs have proven successful in audio-visual speech
recognition, increasing the robustness of speech recognition
in adverse conditions [19, 20]. For audio-visual speech recog-
nition, CHMMs are more appropriate than HMMs with early
feature fusion, as they allow slight asynchronicities between
feature streams, which gives them a significant advantage
regarding the recognition performance.

We will use and expand their capability to handle and
detect asynchronicity in the following, which will allow us
to employ them for simultaneous verification of audio-visual
synchronicity and spoken content of the utterance. The pro-
posed spoofing can be deployed in a deep-learning-based ap-
proach for the speech recognition in an equivalent manner.
However, this work focuses on spoofing detection and due to
the limited data available here, a GMM/HMM-based CHMM
system is a good starting point that already allows us to ex-
plore the applicability of different feature sets for verification
purposes.

The paper is organized as follows: After a brief in-
troduction of CHMMs in Section 2, we explain how the
CHMMs can be constructed for a spoofing detection task
with changing utterances. In Section 3 the calculation of dif-
ferent synchronicity and transcription features via CHMMs
is described. The results for different spoofing scenarios,
a comparison with a baseline method, and a cross-speaker
verification are presented in Section 4 before concluding in
Section 5.

2. SPOOFING DETECTION

In order to recognize a synchronization mismatch between the
audio and the video data, we use CHMMs, so that we can
simultaneously recognize both the audio and the video tran-
scription, and any time difference between the audio and the
video stream.

2.1. Coupled HMMs

CHMMs are an extension of HMMs that is particularly use-
ful for combining different streams in a multimodal system
without the necessity of fusion on the feature level. In this
work, CHMMs are used to verify whether the bi-modal data
is genuine. For the construction of the CHMMs, it is nec-
essary initially to represent each single word as a uni-modal
HMM. In general, for audio-visual speech recognition with
CHMMs, the two marginal HMMs, one for each stream, are

trained separately for each word. During the training of the
HMMs, the conditional observation likelihoods

b(i, t) = P (o(t)|q(t) = i), (1)

for state q(t) = i are calculated based on the observa-
tions o(t) of the stream for each time frame t. Addition-
ally, the state transition probabilities a(i, j) are obtained dur-
ing training. The probability of going from state qt = i to
state qt+1 = j in a discrete time step t→ t+ 1 is

a(i, j) = P (qt+1 = j|qt = i). (2)

As in a speech recognition application, the state transi-
tions are defined such that the model can not step back into a
previous state:

a(i, j) = 0, ∀i > j. (3)

For a CHMM, all states QA = {qA1 , . . . , qANA} of the au-
dio HMM are combined with all statesQV = {qV1 , . . . , qVNV }
of the visual HMM such that the resulting CHMM has
N = NA · NV states. The new conditional observation
likelihoods b(i, t) for each coupled state are combinations of
the corresponding conditional observation likelihoods of the
audio A and the video V stream

b(i, t) = bA(iA, t) · bV (iV , t)

= P (oA(t)|qA(t) = iA)P (oV (t)|qV (t) = iV ),
(4)

with i = [iA, iV ] describing the coupled state as a com-
bination of the single-modality states iA and iV . The fea-
ture vectors oA(t) and oV (t) are obtained from the audio and
the video stream, respectively. The state transitions for the
CHMM are calculated by:

a(i, j) = a(iA, jA) · a(iV , jV ), (5)

with the coupled states i = [iA, iV ] and j = [jA, jV ].

2.2. CHMMs for Spoofing Detection

For audio-visual speech recognition, the corresponding au-
dio HMM and video HMM are, like in [16] and [19], used
as marginal HMMs creating a combined word CHMM as a
Cartesian product model, cf. Equations (4) and (5). The
single word models may then be combined according to a
task grammar. With this approach, the audio and the visual
streams can be asynchronous within one word, but not across
different words. This is sufficient for audio-visual speech
recognition since the audio and the visual stream can usually
be assumed to be synchronous.
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(a) Synchronous streams
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(b) Invalid visual stream
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(c) Asynchronous streams

Fig. 1: The CHMMs for different scenarios and possible paths through the CHMM with M = 3 digits as the challenge:
Figure 1a shows a synchronous utterance, Figure 1b is an example of an utterance with an invalid visual stream, and Figure 1c
shows an utterance with asynchronous streams.

2.2.1. CHMM Construction

In the case of a spoofing attack, where either the two streams
do not match or one stream is missing completely, the syn-
chronicity may not be given. For a spoofing detection, this
asynchrony can be assessed. Thus, in the following, gram-
mar models are built on the level of the single HMMs and
combined to one CHMM for the entire utterance. With this
approach, the audio and the visual streams may be in com-
pletely different words at the same time step.

For our experiments, a sequence of random digits is used
as the utterance. With ten different digits (’zero’ to ’nine’),
10M combinations of different utterances are possible, where
M is the number of digits in the sequence.

In Figure 1 different spoofing scenarios and their possible
paths through a CHMM are sketched for an utterance with
M = 3 digits. For easier visualization, the CHMMs in the
figure are simplified. In general, the audio HMM requires
more states than the video HMM, but here, they are depicted
for NA = NV , and we show only three digits. The CHMM
used for the spoofing detection has many more states and thus
possible paths. Further, the different digits do not necessar-
ily have the same number of states and not all possible state
transitions are sketched. In general, transitions are only possi-
ble top-to-bottom and left-to-right, according to Equations (3)
and (5).

In Figure 1a, a possible path for a synchronous utterance
is shown. Although the streams are synchronous, the rec-
ognized digits still have to be compared to the challenge.
Figure 1b depicts a spoofing scenario with an invalid visual
stream (e. g., a still image of the victim). In this example, the
visual recognition stays in the first visual state, while the au-
dio recognition proceeds. Due to the structure of the CHMM,

for the video, any arbitrary transcription will be recognized as
well. Figure 1c represents a spoofing scenario where the two
streams are not synchronous. In the latter examples, an analy-
sis of the coupled state sequence provides useful information
about the synchronicity.

2.2.2. Optimization of Resource Use

Due to the combinatorial nature of our CHMM construction
scheme and the resulting high number of coupled states, the
computations would get infeasible, if we were to evaluate all
(10 ·M)2 possible combinations of digits in one compound
CHMM. Therefore, we limit the construction of the marginal
HMMs for asynchrony detection to only the most likely digits
at each of the M positions. To obtain these digits, the K
best digits are determined for each position for the audio and
the video stream. These resulting 2K digits per position are
considered to construct the two marginal HMMs. Since some
of the 2K digits of each position will often be recognized by
both, the audio and the video model, among K best digits,
the redundant digits are discarded for the construction of the
marginal HMMs. The resulting CHMM has at most (2K ·
M)2 combinations of digits. This reduces the computational
cost significantly.

3. PROPOSED FEATURES

For the recognition, the forward-backward algorithm is used
to obtain the matrix Γ withN×T values, describing the prob-
abilities for being in all coupled states at time t = 1, . . . , T .
With the Viterbi algorithm and Γ, the most likely path through
the CHMM is calculated. The resulting path is a sequence of
coupled states



q =
[
q(1) = [iA(1), iV (1)], . . . ,

q(T ) = [iA(T ), iV (T )]
]
,

(6)

describing the recognized coupled states in the order of
recognition.

3.1. Synchronicity Features

The audio HMMs are defined with three states per phoneme,
whereas the video HMMs use only one state per phoneme.
Thus, the time alignment difference between the audio and
the video stream is calculated via:

λ(t) =

⌈
iA(t)

3

⌉
− iV (t). (7)

In the case of a genuine utterance, the values of |λ| should
be small. In contrast, a spoofed utterance with non-matching
streams will typically show larger values. As features for the
recognition, two different values have shown to be useful, the
entropy E of the time alignment difference λ and the mean
value of λ(t), denoted by Λ, over all time steps t = 1, . . . , T .

However, using only these features, the audio and the
video stream may appear synchronous, even if the recog-
nized digits of the streams are different, especially, if the two
different digits have the same number of states. As a pro-
posed countermeasure, an additional CHMM is constructed
containing only the challenged digits. With this CHMM, the
distances λκ(t) are calculated according to Equation (7). In
a genuine scenario, both distance vectors λ and λκ should be
very similar. Therefore, we propose two more features:

Λκ =
1

T

T∑
t=1

λ(t)− λκ(t), (8)

Λ|κ| =
1

T

T∑
t=1

|λ(t)− λκ(t)|. (9)

Although the measures are similar, the combination of Λκ
and Λ|κ| leads to a more robust recognition.

3.2. Transcription Features

As additional features for the spoofing detection, the tran-
scriptions of both streams, obtained with the CHMM-based
recognition, are used. This is necessary to prevent replay at-
tacks with videos, where the streams may be synchronous, but
do not contain the utterance of the challenge.

To detect this situation, the differences of the audio tran-
scription τA(m) and video transcription τV (m) to the chal-
lenged digits τ(m) over all positions m = 1, ..,M are calcu-
lated with the Hamming distance, such that each substituted
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HMM
training

create genuine
and spoofing

scenarios

spoofing
detection

test
cases

audio and
visual HMMs

HMM TRAINING

SPOOFING DETECTION

Fig. 2: The training set is used for the training of the audio and
the visual HMMs of the single digits. The development set
is considered to verify the performance of the speech recog-
nition system. With the test set, the genuine, and spoofing
scenarios are built for the evaluation of the spoofing detec-
tion, which uses the trained HMMs. Utterances from all 30
speakers are used for the training, development, and test set.

digit increases the calculated distance by 1. Thus, the result-
ing distances may be between 0 and M and are considered as
features ΘA and ΘV for the distance of the audio transcription
and the video transcription, respectively.

4. EXPERIMENTAL RESULTS

For the experimental evaluation, we have used a set of 30
speakers (15 females and 15 males) with utterances of sin-
gle digits from 0–9. From each speaker, 270 utterances are
used. The dataset is recorded with Microsoft’s Kinect sen-
sor that provides also reliable information about the location
of the mouth region. In the following experiments, we have
used the first of the four available microphone channels. The
data set deployed for the experiments is accessible online. 1

As audio features, the first 13 mel-frequency cepstral co-
efficients (MFCCs) and their first and second derivatives have
been considered. As video features, we have used the first
8× 8 coefficients of a two-dimensional discrete cosine trans-
formation (DCT) of the cropped mouth region.

In Figure 2 the training and spoofing detection is sketched.
170 recordings for each of the 30 speakers have been used
in HMM training to get a speaker-independent audio-visual
speech model. Further 40 recordings per speaker have been
used as the development set to verify the speech recognition
performance. The remaining 60 recordings per speaker have
been deployed to create the genuine and spoofing scenarios
together with the scenarios and the trained HMMs, the spoof-
ing detection is tested.

1doi.org/10.5281/zenodo.823531



M = 3 digits were concatenated per utterance to build
20 utterances per speaker for each spoofing scenario and the
genuine utterances. We have used K = 3 for all experiments,
such that 3–6 digits per position are considered to construct
the marginal HMMs. This is a trade-off between the complex-
ity of the resulting CHMM and the probability of obtaining
the uttered digit in the CHMM.

The spoofing detection has been applied in a challenge-
response setup. Thus, a recorded video of the victim with the
correct utterance is hard to access, since the utterance changes
for each verification process. However, it is still possible to
use recorded videos with different utterances or to use a mod-
ified or synthesized video. Such artificial constructed videos
may show a delay which can be detected, even if the utterance
is correct.

To create test scenarios, different combinations of the au-
dio and video stream have been created. In all cases the audio
and the video stream is from the same speaker for one sce-
nario:

• Scenario #1 (still image): The audio stream is the gen-
uine utterance corresponding to the challenge and the
video stream is only one image for the entire utterance.

• Scenario #2 (cross-video): The audio stream is the gen-
uine utterance corresponding to the challenge and the
video stream is replaced by an arbitrary other one.

• Scenario #3 (wrong utterance): The audio stream and
the video stream do match, but do not correspond to
the digits of the challenge.

• Scenario #4 (delayed): The audio and the video stream
correspond with the challenge, but they have a delay
(±1 s, ±0.5 s, and ±0.25 s).

4.1. Baseline System Description

For comparison, we also have implemented one of the latest
spoofing detection approaches for speaker verification [13].
This approach can also be used in a challenge-response setup.
Additionally, it also does not need specifically enrolled utter-
ances for the spoofing detection. However, in contrast to our
method, the baseline method is speaker-dependent. Thus, for
training it needs utterances from each enrolled speaker.

For the spoofing detection, the baseline system uses CCA
to compare the audio and the video stream [21]. For this
purpose, the projection matrices W and Z (canonic corre-
lation matrices) are calculated with the training set for each
speaker separately. The score for the spoofing detection is
calculated by

S(X,Y ) =
1

N

N∑
n=1

corr(Xwn, Y zn), (10)

SF TF all baseline

Scenario #1 3.25 13.75 1.50 3.85
Scenario #2 10.50 12.25 6.25 21.49
Scenario #3 10.75 1.75 2.00
Scenario #1–2 5.68 14.45 5.18 16.42
Scenario #1–3 8.83 12.50 5.50
Scenario #4 (±1 s) 2.34 43.28 2.71 14.52
Scenario #4 (±0.5 s) 3.10 52.27 2.86 14.50
Scenario #4 (±0.25 s) 8.88 51.25 9.40 10.85
Scenario #4 6.96 54.88 6.46 13.45
Scenario #1,2,4 5.89 55.06 7.11 14.13
Scenario #1–4 8.69 56.72 6.83

Table 1: EER (in %) of different features for the spoof-
ing scenarios and their combinations. The input features are
synchronicity features (SF = [E,Λ,Λκ,Λ|κ|]), transcription
features (TF = [ΘA,ΘV ]), and both together (all). As the
baseline, the approach in [13] has been used.

where wn and zn are the nth column of the projection
matrices W and Z, respectively, and X and Y are the audio
and the video stream of the test scenario, respectively. The
parameter N is tuned on the development set. Hence, only
the synchronicity, but not the transcription is verified. There-
fore, it is not possible to detect scenario #3 with synchronous
video, but the wrong utterance, so this scenario has not been
considered in our evaluation of the baseline method.

As features for the baseline method, the same ones as
in [13] have been used in the evaluation since these provided
the best results. These are MFCCs for the audio data and
space-time auto-correlation of gradients (STACOG) for the
visual data [22].

4.2. Results

To build a spoofing detection with the different proposed
synchronicity and transcription features, support vector
machines (SVMs) have been employed in the following.
For this purpose, we have evaluated the synchronicity fea-
tures SF = [E,Λ,Λκ,Λ|κ|] and the transcription features
TF = [ΘA,ΘV ] separately, and all of these features together.
Table 1 provides an overview of the equal error rate (EER) for
the different spoofing scenarios and combinations of those.
Scenario #4 is separated into different groups, considering
different delays. Scenario #4 is a combination of all three
delays.

In some cases, the different features lead to very different
EERs. In Table 1, the best results are marked in bold. For
most spoofing scenarios, a combination of all features leads
to the best EER, and especially if the different spoofing sce-
narios are averaged, a combination of all features clearly pro-
vides the best results. In general, the difference of the EER
of the single feature groups and the combination never ex-
ceeds 1.22 % and in many cases, the combination is better by
a large margin.



S1–S5 S6–S10 S11–S15 S16–S20 S21–S25 S26–S30 average

Scenario #1 1.00 4.50 2.00 2.00 2.50 3.00 2.50
Scenario #2 8.00 10.00 10.00 7.00 8.00 7.50 8.42
Scenario #3 1.00 3.00 2.00 1.00 4.50 3.00 2.42
Scenario #4 4.50 11.17 9.00 7.42 5.50 12.25 8.31
Scenario #1–4 3.56 14.44 12.67 7.78 6.78 10.17 9.23

Table 2: The EER (in %) for the cross-speaker verification. The speakers in the first row are left out and used to evaluate the
spoofing detection.

Scenario #2 benefits the most from the combination of
both features, since the video-only speech recognition is not
as reliable as the audio-only recognition, such that the mis-
match of the visual stream is not always detected, and a gen-
uine, matching visual stream can sometimes be falsely clas-
sified as spoofed. Additionally, the synchronicity measure is
not as robust here as for scenario #1 were only one image is
used for the whole visual stream. Since, overall, both features
perform about equally well in this scenario, large improve-
ments are possible due to their complementary information.
For scenario #4 the synchronicity features are more valuable
than the transcription features. This is no surprise, due to
the capability of CHMMs to achieve a reliable recognition
for asynchronous data, which clearly distinguishes them from
early-integration-based approaches for this task. Therefore,
the introduced distance features provide a robust measure of
classification.

4.2.1. Comparison with Baseline System

In all cases, the combination of the synchronicity features
and the transcription features leads to a lower EER in com-
parison to the results of the baseline system. Especially for
scenario #2, much better results can be achieved with the pro-
posed approach. This indicates that the CCA-based classifica-
tion focuses on the assignment of major signal changes. Thus,
a wrong transcription in one stream is more difficult to detect.

Interestingly, the EERs for the different delays in sce-
nario #4 are similar. This may also be the result of the
synchronicity-based spoofing detection which relies only on
the assignment of silent/non-silent and non-movement/move-
ment parts.

4.2.2. Cross-Speaker Verification

For many use-cases of spoofing detection it is not feasi-
ble to collect enough data from each enrolled speaker to
train the spoofing detection. Therefore, a 6-fold cross-
verification has been performed by leaving out a group
of speakers during training of the spoofing classification.
The utterances of this held-out group of speakers are used
for the evaluation in Table 2. As input features for all
cases, all introduced synchronicity and transcription features
[E,Λ,Λκ,Λ|κ|,ΘA,ΘV ] are considered.

The results show that the EER is similar for unseen speak-
ers in most of the cases. It can also be observed that some

speakers seem to be easier to spoof (group S6-S10), while for
some speakers (group S1-S5), the EER is even lower than the
corresponding results of Table 1 (all features). Thus, some
speakers seem to be more vulnerable to spoofing attacks, al-
though all results point to a good performance in general.

5. CONCLUSIONS

We have proposed a text-dependent audio-visual spoofing de-
tection for speaker verification. For its evaluation, we have
considered different spoofing scenarios, which can be used
in a real attack. We have introduced a CHMM-based syn-
chronicity measure, which is available for spoofing scenarios
with non-matching streams. Additionally, the assessment of
the transcription with the CHMM-setup also provides a si-
multaneous verification of both features groups, which can
improve the classification in many cases where synchronicity
metrics alone are not sufficient. Additionally, it is also possi-
ble to detect spoofing attacks that are synchronous but contain
the wrong utterance. This shows the great advantage in con-
trast to approaches using synchronicity-based methods only.

Furthermore, via a cross-speaker validation, we have
shown that the proposed spoofing detection can be used
speaker-independently so that new speakers can be enrolled
with no extra effort.

The introduced approach needs an additional step for the
training of the CHMMs. However, a speaker verification with
changing utterances is much harder to spoof, since an attacker
either needs to produce all possible utterances or has only lim-
ited time to produce a spoofing attack. Therefore, this addi-
tional training step should often be justified, and it only needs
to be performed once, before system deployment. In combi-
nation with an audio-visual speaker identification system, like
in [9], the both systems can benefit from each other. Thus, a
more secure and robust audio-visual speaker recognition can
be achieved.

The proposed approach is not limited to digits and
can be used for arbitrary words or sentences as long as
speaker-independent HMMs for speaker recognition can be
trained. For future work, a large-vocabulary version, based on
triphone-level CHMMs including a deep learning approach
will be investigated, to achieve a higher diversity of possi-
ble utterances for a still greater resilience against playback
or synthesis.
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