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ABSTRACT

To improve the accuracy of audio-visual speaker identifica-
tion, we propose a new approach, which achieves an optimal
combination of the different modalities on the score level. We
use the i-vector method for the acoustics and the local binary
pattern (LBP) for the visual speaker recognition. Regarding
the input data of both modalities, multiple confidence mea-
sures are utilized to calculate an optimal weight for the fusion.
Thus, oracle weights are chosen in such a way as to maximize
the difference between the score of the genuine speaker and
the person with the best competing score. Based on these
oracle weights a mapping function for weight estimation is
learned. To test the approach, various combinations of noise
levels for the acoustic and visual data are considered. We
show that the weighted multimodal identification is far less
influenced by the presence of noise or distortions in acoustic
or visual observations in comparison to an unweighted com-
bination.

Index Terms— speaker recognition, face recognition,
multimodal biometrics, classifier combination, discriminative
classifier fusion

1. INTRODUCTION

The performance of speaker recognition, considering acoustic
data only, typically shows severe performance impairments in
noisy environments. Additionally, audio-only speaker recog-
nition, like other biometric methods, is vulnerable against
spoofing attacks, where the attacker claims the identity of an-
other person [1]. Multimodal recognition systems, like audio-
visual speaker recognition, can be used to overcome these
limitations by extending acoustic speaker recognition with a
visual biometric method, e. g., face recognition.

Both modalities can be affected by different kinds of
noise: During the visual recognition process, bad lighting
conditions, blurring, and rotations of the head can decrease
the probability of a successful recognition. In contrast, an
acoustic speaker recognition system is not influenced by these
specific problems. However, the latter can be compromised
by background noise. Therefore, it would be advantageous to

combine both systems in such a way that they can compensate
for each other’s weaknesses.

In [2] it has been shown that a combined audio-visual
speaker identification can increase the accuracy of the single-
modality methods. However, in this approach, only the result-
ing ranks of the single systems are considered. In other audio-
visual speaker recognition systems, the fusion is applied ear-
lier in the process: In [3] an approach for feature fusion is
proposed and [4] uses deep Boltzmann machines in combina-
tion with deep neural networks to fuse both modalities.

In general, the fusion of multiple classifiers can be char-
acterized by the stage where the fusion is applied. An early-
stage fusion is applied at the feature level. Alternatively, the
fusion can be conducted at the decision level, where the fea-
tures are calculated separately and combined for the final de-
cision. A late-stage fusion, which we use here, is on the score
level. Therefore, for each modality a score is calculated and a
final decision is obtained by considering the combined scores.

In [5] an overview of fusion strategies for combining mul-
tiple modalities is outlined. In our work we will consider the
basic product rule. The rule has been considered by other
works [6], and it will serve as our baseline.

The main challenge is to combine two sub-systems in
such a way that they can truly benefit from each other. Pre-
vious work on audio-visual speech recognition [7], [8] has
shown that noise-adaptive stream weights can significantly
improve the performance of multimodal speech recognition.
The idea is to create a side-channel for each modality, which
outputs a measure of confidence. This helps to decide how
much each modality should contribute to the overall decision.
This approach will be described in Section 3 in more detail.

In contrast to [7], in our work, we use the stream weight
estimation for an identification task. Thus, we propose a new
approach using a new, discriminative cost function to calcu-
late target stream weights, which increase the score of the
genuine speaker relative to the most competitive speaker.

Similar to the Minimum Classification Error (MCE), used
for automatic speech recognition (ASR) [9], our approach
tries to minimize the classification error. While the MCE
criterion in the context of ASR is used to reduce the num-



ber of classification errors of sequences, specifically of word
sequences, our cost function maximizes the score of the gen-
uine speaker relative to the next best candidate, which leads
to a more robust speaker recognition.

Further, we introduce confidence measures, which can be
used together with the target stream weights in order to learn
a mapping function for an optimal weight estimation.

Currently, the basis of many speaker identification meth-
ods is GMM-based speaker models [10], [11], which are also
a core component of the i-vector model. The i-vector ap-
proach is designed to decouple channel-related and speaker-
based signal variabilities using Joint Factor Analysis (JFA)
and thus offers greater robustness [12].

For a state-of-the-art face recognition we chose the local
binary pattern (LBP), due to its ability to distinguish faces
effectively [13]. Additionally, the LBP can be implemented
with low computational costs and shows high accuracy for
changing gray levels [14].

2. SPEAKER AND FACE RECOGNITION

In order to train and test the combination of the acoustic
and visual recognition on the score level, the scores for both
modalities need to be calculated separately.

2.1. Face Recognition

For face recognition, we chose the LBP, which is essentially
based on comparing the value of a pixel with the values of the
surrounding pixels. These adjacent pixels are translated into a
binary pattern. If the pixel value is smaller, the corresponding
position in the binary pattern is set to 0; if the value is larger,
the position is set to 1. The resulting binary pattern can be
interpreted as an integer value, which is saved for each pixel
and is used for the classification. To optimize the recognition,
a radius can be defined, describing which neighbors should
be considered for each pixel. Additionally, to decrease the
dimension, the image is divided into cells and, for each cell,
one element for the feature vector xV is computed.

Furthermore, the depth images are considered as well.
This can later act as a countermeasure against spoofing at-
tacks, using a captured image of the victim. Additionally, and
importantly for our application, the depth image is illumina-
tion independent, which leads to a more robust recognition.
Therefore, both feature vectors computed with LBP are con-
catenated.

After a training phase, the resulting feature vector of
a new image can be used for comparison with all enrolled
speakers. At this point, the Euclidean distance is computed
between the test image and the mean training image of all
speakers Ck with k = 1, ..., NS to obtain a confusion matrix,
where NS is the number of enrolled speakers .

In addition, for the later audio-visual fusion, a Rayleigh
probability density function is fitted onto the distances of the
true positives to obtain class posterior probabilities P(Ck|xV ).

2.2. Speaker Recognition

The i-vector recognition method is more complex than the
LBP and involves several steps. We used an implementation
for MATLAB by Microsoft Research [15]. In the following
we give a brief outline of this approach:

Step 1: In the training phase, MFCCs (mel frequency cep-
stral coefficients) are extracted from audio files, which con-
tain sentences of the enrolled speakers. This data is used to
fit a Gaussian-Mixture-Model-based Universal Background
Model (GMM-UBM).

Step 2: The zeroth and first order sufficient statistics
(Baum-Welch statistics) for observations (training and test
vectors) are computed, given the UBM.

Step 3: Training vectors are created by concatenating the
sufficient statistics. These vectors are used to learn the total
variability subspace (representation of all enrolled speakers)
using a factor analysis.

Step 4: Here, the i-vectors for the training and test vectors
(in the form of sufficient statistics), are computed with the
UBM and the previously calculated total variability subspace.

Step 5: The trained i-vectors of all classes are processed
using a linear discriminant analysis (LDA) with Fisher’s cri-
terion for further dimensionality reduction and to improve the
classification in the scoring function.

Step 6: A Gaussian probabilistic LDA (PLDA) is applied
to the previously computed training i-vectors. This corre-
sponds to learning a factor analysis model of the i-vectors,
which will be used in the actual speaker identification stage.

Step 7: For the actual identification, a log-likelihood ra-
tio is computed, acting as feature vector xA, and used for
a pairwise scoring of the test i-vectors against all enrolled i-
vectors. This is done for every possible combination so that
a confusion matrix is obtained as the result considering all
speakers Ck.

In addition to this confusion matrix, posterior probabili-
ties are needed for the later fusion stages. Thus, an appro-
priate distribution needs to be fitted onto the likelihood ratios
of the true positives to obtain P(Ck|xA). Here, Gaussian dis-
tributions provided a good fit, and were thus learned on the
training data.

3. CLASSIFIER COMBINATION

Once the modality dependent feature vectors xA and xV have
been extracted, both identification systems can compute their
respective scores. However, an unweighted combination of
the previously introduced scores P(Ck|xA) and P(Ck|xV ) is
not ideal, because under certain conditions, one of the two
systems might be presented with reliable data, whereas the
other might only have distorted features available, e. g., due
to acoustic noise or low-quality video data.

Therefore, in this work, we suggest using confidence in-
formation, which informs a fusion stage about the reliabil-



ity of each of the two sub-systems. Thus, the confidence in-
formation is utilized to reach a more environmentally robust
classification based on noise-dependent weighting of the two
subsystems. This approach is explained in further detail in
Section 3.2.

3.1. Baseline

As mentioned above, the intention is to compute the prob-
abilities of seeing any of the possible classes, respectively
speakers Ck, given the two feature vectors xi from the two
modalities i ∈ {V,A}, where k = 1 . . . NS . Since the prob-
ability density p(xi) is unknown, but the likelihood p(xi|Cj)
has been learned, we can marginalize over all classes in the
denominator:

P(Ck|xi) =
p(xi|Ck)P(Ck)

p(xi)
=

p(xi|Ck)P(Ck)∑NS

j=1 p(xi|Cj)P(Cj)
.

For each unimodal classifier, the class CK̂ is assigned to the
input feature vector xi if

K̂ = arg max
k=1..NS

P(Ck|xi).

Applying the same decision rule to the audio-visual fusion
task leads to

K̂ = arg max
k=1..NS

P(Ck|xV ,xA). (1)

Since the probability P(Ck|xV ,xA) in Equation (1) is not
known, Bayes’ theorem and marginalization are applied to
rewrite the conditional joint probability, leading to

P(Ck|xV ,xA) =
p(xV ,xA|Ck)P(Ck)∑NS

j=1 p(xV ,xA|Cj)P(Cj)
. (2)

Assuming that the feature vectors xV ,xA are statistically
independent given the class Ck, the joint distribution can be
factorized into

p(xV ,xA|Ck) = p(xV |Ck)p(xA|Ck). (3)

Substituting from Equation (3) into Equation (2) and can-
celling the priors by considering all speakers as equally likely,
the decision rule can be rewritten as

K̂ = arg max
k=1...NS

P(Ck|xV )P(Ck|xA). (4)

3.2. Weighting of Classifiers

A stream weight λ is defined and incorporated in the follow-
ing decision rule:

K̂ = arg max
k=1...NS

P(Ck|xV )(1−λ)P(Ck|xA)λ, (5)

such that 0 ≤ λ ≤ 1. If λ = 0.5, the decision rule is equiva-
lent to that of unweighted classification. This type of stream
weighting has previously led to great accuracy improvements
for audio-visual speech recognition, e. g., in [7].

To achieve optimal stream weights for audio-visual iden-
tification, we will propose a cost function in Section 3.2.1.
This cost function can provide optimal stream weights based
on knowing the true speaker identity. Hence, the resulting
stream weights can be used as training targets for learning a
mapping function f , which uses confidence measures as its
input and outputs estimated stream weights.

Thus, we also need appropriate confidence measures. For
this purpose, we have considered a range of metrics. Among
those, the dispersion D and different estimators of the distor-
tion or noise level of the video and audio files have shown to
provide reliable confidence measures. The dispersion is com-
puted over the posterior probabilities obtained for one test file:

Di =
2

K(K − 1)

K−1∑
l=1

K∑
m=l+1

log
p(C∗l |xi)
p(C∗m|xi)

, (6)

where the K classes C∗1 , ..., C
∗
K with the largest probabil-

ities are used, sorted in descending order of likelihood. The
value of K can be lower than or equal to the number of en-
rolled speakers.

The noise level of the audio signals, denoted by εA, is
estimated by a minimum mean-square error log-spectral am-
plitude estimator [16], for which we have used the MATLAB
implementation provided by [17].

To estimate the image distortion (denoted by εV ) three
different values are considered, i. e., for each image the light-
ing condition, the degree of blurring, and the rotation are es-
timated and used as confidence measures in a vector

εV = [εV,L, εV,B , εV,R].

As the feature εV,L for the lighting conditions (providing
information of whether an image is overexposed or underex-
posed), the mean pixel value over all pixels is calculated.

A potential blurring, e. g., due to the speaker’s move-
ments during image capture, is estimated by applying a
Laplacian filter kernel for edge detection. To obtain one
feature value εV,B , we calculate

εV,B = σ2(IL),

where σ2 represents the variance and IL is the image after
edge detection.

The last confidence measure εV,R, representing a poten-
tial rotation of the speaker’s head, is obtained by horizon-
tally mirroring the image and calculating the cross-correlation
between the original and the mirrored image. Moreover, to
obtain light-independent results for the blurring and rotation
measures, εV,B and εV,R are computed from the depth image.



Furthermore, we suggest using a function f , which maps
all confidence measures to an optimal weight in the sense of
our decision rule in Equation (5):

λ̂ = f(DA, DV , εA, εV ). (7)

Before the mapping function f can be used as given in Equa-
tion (7), it has to be learned. For this purpose, we are utilizing
supervised machine learning approaches.

To obtain a large number of training targets for learn-
ing the mapping function f , both speaker identification
systems—audio and video—first need to be trained and in
the second step predictions with various data sets have to
be calculated. This development set contains NDS files un-
der each of the different acoustic and visual conditions. In
our case, NC = 10 conditions are utilized for each single-
modality recognition system. For these data sets, the cor-
responding dispersion and noise levels are computed. After
that, N = NDS · N2

C input cases for the function f can be
formed. In order to learn the mapping function f with these
N tuples, we will need training targets, i. e., optimal stream
weights for the entire range of the development set.

3.2.1. Optimal Stream Weights

In the following, we suggest an approach to find the optimal
stream weights λθ for all cases in the development set. The
approach leads to ideally discriminative stream weights in-
sofar as it maximizes the ratio of the likelihoods of the true
speaker Ctrue and the most likely competing speaker Cconf .

For this, we assume Ctrue is the true class of the input
feature vector xi, while Cconf is the class that is most likely
to be confused with the true identity, i. e.,

Cconf = arg max
∀Ck\Ctrue

P(Ck|x). (8)

Therefore, to find the optimal value of λθ, we suggest to
maximize the following discriminative cost function for every
file in the development set:

λθ = argmax
λ

[
P(Ctrue|xV ,xA)
P(Cconf |xV ,xA)

]
p(λ)

= argmax
λ

[ log P(Ctrue|xV ,xA)

− log P(Cconf |xV ,xA) ] p(λ),

(9)

such that 0 ≤ λ ≤ 1, where the joint distribution probabilities
are defined according to (5):

P(Ck|xV ,xA) = P(Ck|xV )(1−λ)P(Ck|xA)λ. (10)

In this way, the distance between the posterior probabil-
ity of the true and the second class is maximized. If one
of the two recognition systems makes a wrong prediction,
P(Cconf |x) will be higher than P(Ctrue|x). This effect can

typically be mitigated through the choice of better weighting,
and an optimal λ is obtained through maximizing (9).

As in [7], we assume that the optimal λ should follow a
prior distribution p(λ) ∼ N (µ, σ2). In our work, µ is ob-
tained during a search, testing different values for µ between
0 and 1 with a step size of 0.01 and using that value that leads
to the highest recognition rate. To refine the result, the vari-
ance σ2 is increased iteratively until all λθ become 0 or 1 or a
maximum number of iteration steps is reached. Considering
all possible λθ of all iterations steps, the λθ that lead to the
best recognition rate are used as oracle weights.

Since the true class identity is used for this computation,
these stream weights λθ are referred to as oracle weights.
They can thus only serve as training targets for learning f
in (7), but are not applicable in practice for speaker identifi-
cation.

3.2.2. Models for estimating λ

Based on the above considerations, a method for generat-
ing training targets λθ for the function f is available, but an
appropriate model for the function still needs to be chosen.
Since the weights λ can be in the range of [0, 1], due to the as-
sumed prior, finding optimum weights becomes a regression
problem rather than a classification problem. Experiments
have been carried out with feed-forward neural networks, ei-
ther shallow, or deep neural networks (DNN), for the mapping
function.

4. EXPERIMENTAL RESULTS

For the experiments, a data set was deployed, which we
had recorded with a Kinect sensor from Microsoft. We there-
fore considered the following data, provided by the Kinect
sensor: the four-channel microphone array, the Full HD
video, and the captured depth images. The data set contains
30 speakers (15 females and 15 males), with recorded utter-
ances of English digits from 0 to 9. For this work, 4 digits

Fig. 1: For the face recognition different kinds of distortion
were considered, i. e., adverse lighting conditions, blurring,
and rotations.



were concatenated randomly for one training or test unit, in
order to obtain a longer utterance.

During our experiments, we used allNS = 30 speakers in
each phase. This includes the enrollment during the training,
the development set to learn the mapping function, and the
test set to verify the obtained mapping function. Such a so-
called closed-set identification does not consider non-enrolled
speakers, like impostors. However, in this work we focus only
on the optimal combination of different modalities for speaker
identification among enrolled speakers and do not consider
impostors.

In order to train the speaker and face recognition as de-
scribed in Section 2, a total number of NF = 30 utterances
per speaker of the introduced data set were used.

The images were used as gray scale images and processed
with the LBP as described in Section 2. For this, one image
of each utterance was chosen for the recognition. The best re-
sults for the face recognition could be achieved with a radius
of 2 pixels for the video image and a radius of 3 pixels for the
depth image. We observed that it is possible to implement a
robust face recognition solely using the depth images. Thus,
the depth image seems to be a valuable contribution, regard-
ing the robustness and security of face recognition. For our
experiments, we used both, the video and the depth images.

For the speaker recognition, the best results were achieved
with 24 MFCCs, augmented with their first- and second-order
derivatives. The speaker recognition with i-vectors was ap-
plied to one channel of the recorded microphone array. To this
end, we chose 128 mixture components for the GMM-UBM.

After the training phase, numerous data sets need to be
created in order to learn the mapping function. For this pur-
pose, NF = 20 new utterances per speaker were considered
for the development set, which had not been used to train the
sub-systems. In order to simulate adverse environmental con-
ditions, we added varying amounts of noise to the audio test
files and introduced distortions to the video data. For acous-
tic speaker recognition, white Gaussian noise was added to
the utterances. In total, 9 different noisy audio test cases with
signal-to-noise ratios (SNRs) between 4 dB and 20 dB were
created and the original utterances were also included in the
test cases.

For the images, different kinds of distortions were con-
sidered, i. e., different lighting, blurring, and rotations. To
the depth images, which are independent of the lighting, only
the blurring and rotations were applied. For the lighting dis-
tortions, we manipulated the pixel values, in order to simu-
late different conditions. To blur the images, we convolved
the image with a filter kernel, which describes the direction
and amount of motion for each test case. For this, the kernel
is chosen such that the smoothing values are either concen-
trated in the focus of the kernel (less blurring) or are more
distributed in the defined direction (more blurring). In Fig-
ure 1 all NC = 10 conditions are shown with the original
image located on the bottom right.

Number of Hidden Layers: 1 2 3 4

f(DA, DV , εA, εV ) dev 0.939 0.940 0.941 0.941
test 0.932 0.932 0.932 0.932

f(εA, εV ) dev 0.936 0.940 0.940 0.940
test 0.927 0.930 0.929 0.931

f(DA, DV ) dev 0.928 0.928 0.928 0.928
test 0.914 0.914 0.914 0.914

Table 1: Recognition rates for different settings.

Overall, N2
C = 100 different combinations of acoutic and

visual conditions were formed to create the development set.
Each condition contains NS · NF = 30 · 20 recordings. For
those combinations, the oracle weights and the confidence
measure values were computed according to Section 3.2.1.

4.1. Weight Estimation

After the calculation, the values of the oracle weights and the
confidence measures from the complete development set, are
used to train a mapping function. For this purpose, we used
feed-forward neural networks with different numbers of hid-
den layers. Additionally, we tested different combinations of
confidence measures. For the dispersion calculated by Equa-
tion 3.2 we chose K = 7.

To assess the performance, the recognition rate R is calu-
lated by

R =
Nrec

NS ·NF
,

where Nrec denotes the number of correctly classified files.
In order to verify the mapping function computed by the NN,
a test set, considering NF = 20 new utterances per speaker,
was used.

In Table 1 an overview is presented of the different num-
bers of hidden layers (with 10 neurons per hidden layer) com-
bined with different sets of confidence measures as inputs for
the mapping function. Here, the first value in each cell is cal-
culated with the development set (dev) and the second value
with the test set. For this, we always used the output λ̂ of the
mapping function, trained using the confidence measures as
denoted in the first column.

By comparing the results of the development set and the
test set, one can see that the mapping function remains ro-
bust for unseen data. Further, using only the dispersion val-
ues or the estimated noise/distortion levels leads to almost
equally high recognition rates as using all confidence mea-
sures. Moreover, changing the number of layers does not
substantially affect the recognition rate. However, using 3
hidden layers and all confidence measures led to the highest
accuracy for combinations using clean audio and video data
and was therefore chosen for the following experiments.

In Table 2 the results for this setting (bold values in Ta-
ble 1) are shown in detail. Here, all N2

C = 10 · 10 possible
combinations of the test conditions are presented. In the gray



cells, the recognition rate of the single-modality systems are
displayed. In the remaining cells, the combined recognition
is shown. Here, the top value represents the recognition rate
obtained with the baseline approach (λ = 0.5). The second
value is the recognition rate achieved with the weights λ̂, es-
timated by the DNN.

As one can see, in the results for the baseline system with
λ = 0.5, the audio recognition shows high recognition rates
for test cases with high SNR and low recognition rates for
test cases with low SNR. On the other hand, the combined
recognition rate barely seems influenced by the face recog-
nition. This observation is consistent with the consideration
that, in an unweighted recognition, the result depends on the
distribution of the scores of the single systems.

When the noise level increases one would expect a clas-
sifier to yield to a flat posteriori probability distribution,
as it will not be able to reliably differentiate between the
classes. Yet, classifiers applied outside of their training do-
main, i. e., trained on clean data and applied on noisy data,
have a tendency to yield peaked distributions, preferring cer-
tain classes [8]. This contradicts the assumption of the purely
Bayesian fusion for λ = 0.5 and yields inferior results for
the unweighted fusion with increasing noise levels (compare
Table 2). The weighting of the streams counteracts this effect
by introducing an external signal for classifier confidence.

Therefore, if both modalities are weighted equally, a cor-

4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB 18 dB 20 dB clean

λ 0.30 0.40 0.50 0.60 0.71 0.78 0.89 0.94 0.98 1.00

ID1 0.5 0.35 0.45 0.55 0.66 0.73 0.81 0.91 0.95 0.98 1.00
λ̂

0.39
0.57 0.68 0.74 0.79 0.83 0.88 0.92 0.96 0.98 1.00

ID2 0.5 0.35 0.43 0.54 0.64 0.74 0.83 0.92 0.96 0.98 1.00
λ̂

0.45
0.66 0.71 0.77 0.82 0.89 0.93 0.96 0.98 0.99 0.99

ID3 0.5 0.36 0.44 0.54 0.66 0.75 0.84 0.92 0.96 0.98 1.00
λ̂

0.56
0.74 0.78 0.84 0.89 0.93 0.98 0.99 0.99 0.99 0.99

ID4 0.5 0.35 0.45 0.54 0.65 0.75 0.84 0.92 0.96 0.98 1.00
λ̂

0.64
0.79 0.83 0.87 0.91 0.94 0.96 0.98 0.98 0.99 0.99

ID5 0.5 0.36 0.45 0.55 0.66 0.74 0.82 0.91 0.95 0.98 1.00
λ̂

0.68
0.74 0.79 0.83 0.86 0.90 0.94 0.97 0.98 0.99 1.00

ID6 0.5 0.35 0.45 0.55 0.66 0.74 0.84 0.92 0.96 0.98 1.00
λ̂

0.76
0.85 0.89 0.93 0.96 0.98 0.98 0.99 0.99 1.00 1.00

ID7 0.5 0.36 0.46 0.56 0.67 0.74 0.83 0.91 0.96 0.98 1.00
λ̂

0.85
0.88 0.90 0.93 0.96 0.98 0.99 1.00 1.00 1.00 1.00

ID8 0.5 0.36 0.46 0.55 0.66 0.75 0.84 0.92 0.96 0.98 1.00
λ̂

0.87
0.92 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00

ID9 0.5 0.36 0.44 0.54 0.66 0.74 0.83 0.92 0.96 0.98 1.00
λ̂

0.98
0.97 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

OI 0.5 0.35 0.44 0.53 0.64 0.73 0.81 0.91 0.95 0.98 1.00
λ̂

1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Recognition rates for every combination of audio
noise and video distortions achieved on the test set. The rows
present the different image distortions (ID1 – ID9) and the
original image (OI). The different audio test cases are pre-
sented in the columns. In the gray cells, the recognition rates
for the single-modality systems are shown.

rect classification in the face recognition is not able to com-
pensate a wrong classification in the speaker recognition.

In contrast, the mapping function, obtained by the DNN,
performs just as expected: It increases all recognition rates
up to at least very close to the highest recognition rate of
the single-modality systems. For a few combinations at high
SNRs, there are slight decreases in comparison to the baseline
result. However, the recognition rate in these cases remains
very high and the changes in accuracy never exceed 1 %.

On the whole, for the complete test set, the average im-
provement was from 74.17 % to 93.23 %, which shows the
applicability of the presented approach also in those situations
where stream weights are not based on oracle information, but
rather estimated from the newly suggested approach, based on
easily estimated confidence values.

5. CONCLUSIONS

We have shown that a better speaker identification can be ob-
tained by a fusion of state-of-the-art audio-based and video-
based identification. For this purpose, we have proposed a
new weighting approach for the two modalities using a dis-
criminative cost function to increase the ratio of the score of
the true speaker relative to the speaker with the most compet-
itive score. Feed-forward neural networks with multiple hid-
den layers led to the best results for computing these stream
weights, based on a set of confidence measures.

We have observed that with a multimodal recognition it is
fairly easy to deal with different kinds of noises or distortions
added to the audio and video data by using an estimation of
these distortions together with the dispersion of the scores.

On the whole, a large improvement over all considered
test cases can be observed. Additionally, the results are inde-
pendent of the posteriori probability distribution of the single-
modality recognition systems. Importantly, in all considered
cases, we achieved at least principally the recognition rate we
would achieve with the best single modality. Moreover, for
the test cases with low recognition rates, we were always able
to exceed these values, in many cases very notably.
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